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General Conference Information

Conference Venues

Main Conference, Workshops and PhD Symposium:
University of Goettingen, Central Lecture Hall (ZHG), Platz der Goettinger Sieben 5,
37073 Goettingen

Conference Dinner and Public Lecture:
Alte Mensa, Wilhelmsplatz 3, 37073 Goettingen

Opening Hours Registration Desk
Tuesday, Sept 12 13:00 - 18:30 h
Wednesday, Sept 13 08:30 - 18:30 h
Thursday, Sept. 14 08:30 - 18:30 h
Friday, Sept 15 08:30 - 13:00 h

Opening Hours Exhibition
Wednesday, Sept 13 12:00 - 19:45 h
Thursday, Sept 14 09:00 - 19:00 h
Friday, Sept 15 09:00 - 13:00 h

Poster Sessions
Session I, Wednesday, Sept 13 17:15 - 19:45 h
Session II, Thursday, Sept 14 12:15 - 15:30 h
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General Conference Information

Mounting and Dismounting Posters
Poster boards are numbered according to the abstract numbers in the poster booklet
(W indicates the first poster session on Wednesday and T the second poster session
on Thursday). Pins for putting up posters will be provided. Posters can be mounted
starting at 13:00 on Wednesday and at 09:00 on Thursday. Please take your poster
down after your session otherwise the conference staff will remove it. Removed posters
that are not picked up at the registration desk by Friday, September 15, 13:00 will be
disposed of.

Abstracts
Conference abstracts including high-resolution versions of figures will be published online
at http://www.g-node.org/abstracts/bc17.

Name Tags
Official name tags will be required for admission to all conference events. Participants
who lose their name tags will have to pay a fee of 10.00 EUR to retain a replacement
tag.

Wardrobe
Storage space for wardrobe and luggage will be provided in room 004 on the ground
floor. The organizer assumes no liability for lost valuables of the wardrobe at the venue.

Silent Room/Working Space
You are welcome to use room 005 on the ground floor. Working space is also provided
on the first floor as shown on the floor plan.

Internet
Wireless web access is provided free of charge. Logins and access instructions are
provided on request at the registration desk. This WiFi network is unencrypted.
Please feel free to use eduroam if you wish.

Bernstein Conference Dinner
The Bernstein Conference dinner will take place at the Alte Mensa, Wilhelmsplatz 3,
which is 15 minutes walking distance from the Central Lecture Hall (ZHG). The dinner
will start at 19:30. You need to register in advance and have a voucher for the dinner.
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How to get to

Main Conference and Workshops
The Central Lecture Hall (ZHG), Platz der Goettinger Sieben 5, is located at the centre
of the university complex on the "Platz der Goettinger Sieben". The lecture hall is near
the city centre and only ten minutes walk from the railway station.

Public Lecture and Conference Dinner
Both events will take place at Alte Mensa, Wilhelmsplatz 3. Alte Mensa is a historical
building of the University of Goettingen and it is located within the city centre.

Cinema Bernstein
The German Primate Center (DPZ), Kellnerweg 4, Main Lecture Hall can be reached
by bus lines 21, 22 and 23 from ’Platz der Göttinger Sieben’. From stop "Kellnerweg"
cross the road, go in the direction of the bus. At the mailbox, turn left into the footpath
and proceed to the end. Turn right into Kellnerweg. The main entrance of the DPZ is
on the left side.
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General Conference Information

Floor Plan
University of Goettingen, Central Lecture Hall (ZHG)

Ground Floor

First Floor
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Schedule

Workshops
The Bernstein Conference features a series of Satellite Workshops on September 12-13.
The goal is to provide a forum for the discussion of topical research questions and
challenges. Details of the individual workshops are available on the conference webpage
(www.bernstein-conference.de)

Half-Day Workshops (Sept 12, 2017, 13:00-18:30)
WS 1 Topology and dynamic of neuronal networks as guidelines for memristive computing

systems (Hermann Kohlstedt, Martin Ziegler)

Half-Day Workshops (Sept 13, 2017, 09:00-12:30)
WS 2 Information transmission and communication in brain circuits (Claudio Mirasso, Alireza

Valizadeh)
WS 3 Functional network dynamics of the hippocampus (Christian Leibold, Anton Sirota)

Full-Day Workshops (Sept 12, 2017, 13:00-18:30 and Sept 13, 2017, 09:00-12:30)
WS 4 Connectivity generation, exploration and visualization for large scale neural networks

(Wouter Klijn, Sandra Diaz)
WS 5 Advanced theoretical approaches to collective network phenomena (Moritz Helias,

Farzad Farkhooi, David Dahmen)
WS 6 Multiscale modeling and simulation (Salvador Dura-Bernal, William W. Lytton)
WS 7 Neural sampling: computations and experimental predictions (Ralf M. Haefner, Gergo

Orban)
WS 8 The neural code: universal grammar or area-specific mechanisms? (Eleonora Russo,

Hazem Toutounji)
WS 9 Deep neural networks tutorial for computational neuroscientists (Matthias Bethge,

Jonas Rauber, Wieland Brendel)

Cinema Bernstein
Tuesday, September 12
19:00 Movie and discussion (Hosts: Julia Fischer and Fred Wolf)

Schläfer / Sleeper (Austrian-German Film 2005, Original with English subtitles)
with Benjamin Heisenberg (Artist, Author and Filmmaker)
Venue: German Primate Center, Kellnerweg 4, Main Lecture Hall
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Schedule

Main Conference

Wednesday, September 13

13:00 Welcome by Ulf Diederichsen,
Vice-President for Research, University of Goettingen

13:05 Welcome by Andreas Herz,
Chairman of the Bernstein Association for Computational Neuroscience

13:15 Opening Keynote Lecture (Chair: Fred Wolf)
Kenneth Miller (Columbia University, New York, USA)
The stabilized supralinear network, or, the importance of being loosely balanced

Session 1: Computational Neuroscience of Learning and Memory
(Chair: Claudia Clopath)

14:00 Nicolas Brunel (Duke University, Durham, USA)
Attractor dynamics in networks with learning rules inferred from data

14:45 Adrienne Fairhall (University of Washington, Seattle, USA)
Control of variability in motor learning

15:30 Coffee Break

16:00 Sofia Jativa (University College London, London, UK)
Effects of short-term plasticity on the memory lifetime of recurrent neural
circuits

16:15 Sara Zanonne (Bioengineering, Imperial College London, UK)
Sequential neuromodulation of Hebbian plasticity offers a mechanism for
effective reward-based navigation

16:30 Robert Guetig (MPI for Experimental Medicine, Goettingen, Germany)
Spiking neurons can discover predictive features by aggregate-label learning

17:15 -
19:45

Poster Session I

17:30 -
18:30

The Funder’s Hour (Chair Fred Wolf, parallel to the poster session I)
HFSP: Funding International Research Collaborations in the Life Sciences
with Barbara Pauly (HFSP Director of Fellowships) and
Jérémie Barral (NYU, HFSP Long-Term Fellow)

20:00 Public Evening Lecture (in German) (Host: Marion Silies & Fred Wolf)
Niels Birbaumer
Abolishment of the locked-in state with a Brain-Machine-Interface (BMI)
Gehirn-Maschine-Verbindungen: Wem nutzen sie?
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Thursday, September 14

Session 2: Sensory Neuroscience
(Chair: Laura Busse)

09:00 Stephanie Palmer (University of Chicago, Chicago, USA)
Understanding retinal response through the lens of prediction

09:45 Tom Mrsic-Flogel (University College London, London, UK)
Principles of local and long-range organisation of cortical circuits

10:30 Coffee Break

11:00 Ziad M. Hafed (Werner Reichardt Centre for Integrative Neuroscience, Tue-
bingen, Germany)
The foveal visual representation of the primate superior colliculus

11:15 David E Whitney (Max Planck Florida Institute for Neuroscience, Jupiter,
USA)
High cellular and columnar variability underlies the absence of early orientation
selectivity

11:30 Judith Hirsch (University of Southern California, Los Angeles, USA)
Neural circuits for visual processing in thalamus

12:15 Poster Session II

Session 3: Circuit Neuroscience & Connectomics
(Chairs: Viola Priesemann, Claus C. Hilgetag)

15:30 Moritz Helmstaedter (MPI for Brain Research, Frankfurt am Main, Germany)
Cerebral cortex connectomics

16:15 Merav Stern (University of Washington, Seattle, USA)
From connectivity to rate dynamics - successes and failures of the mean-field
approach

17:00 Coffee Break

17:30 Leonardo L. Gollo (QIMR Berghofer, Brisbane, Australia)
Economic and topological trade-offs in the human connectome

17:45 Wouter Klijn (Forschungszentrum Juelich, Juelich, Germany)
Visual exploration and generation of connectivity in neural networks: bridging
the gap between empirical data and theoretical model definition

18:00 Siegrid Loewel (University of Goettingen, Goettingen, Germany)
The dynamic architecture of the adult visual cortex: how to keep my brain
young?

19:30 Conference Dinner at the Alte Mensa, Wilhelmsplatz 3, Goettingen
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Schedule

Friday, September 15

Session 4: Primate Cognition / Computational Psychology
(Chairs: Julia Fischer, Alexander Gail)

09:00 Matthew Rushworth (University of Oxford, UK)
The anterior cingulate cortex in learning and changing behaviour

09:45 Andreas Nieder (University of Tuebingen, Tuebingen, Germany)
The magical number zero

10:30 Coffee Break
11:00 Presentation of the Brains4Brains Award 2017 and lecture by the awardee

Elise Genevieve Rowe (Monash University, Melbourne, Australia)
Bayesian mapping reveals that attention boosts neural responses to predicted
and unpredicted stimuli

11:30 Hazem Toutounji (Central Institute of Mental Health and Bernstein Center
Heidelberg-Mannheim, Mannheim, Germany)
A state space model for change point detection in multivariate spike count
data

11:45 Benjamin Dann (German Primate Center, Goettingen, Germany)
Single trail population activity of the fronto-parietal grasping network evolves
through three independent subspaces

12:00 Anne Churchland (Cold Spring Harbor Laboratory, New York, USA)
Single-trial decisions are accurately predicted by inhibitory neural population
activity

12:45 Closing remarks by Fred Wolf
13:00 Announcement of the Bernstein Conference 2018 in Berlin

PhD Symposium
Venue: The Central Lecture Hall (ZHG), Platz der Goettinger Sieben 5, 37073 Goettingen

Tuesday, September 12

18:00 PechaKucha presentations Part 1
19:00 Coffee break
19:15 PechaKucha presentations Part 2
20:15 PhD Social (Dinner tba)

Friday, September 15

15:15 Tatjana Tchumatchenko, Max Planck Institute for Brain Research, Frankfurt,
Germany

15:30 Marion Silies, European Neuroscience Institute, Goettingen, Germany
16:00 Panel Discussion: Tatjana Tchumatchenko & Marion Silies
18:00 PhD Social (Dinner tba) & Farewell
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Special Events

Cinema Bernstein
Tuesday, September 12, 19:00
Venue: German Primate Center, Kellnerweg 4, Main Lecture Hall
with Benjamin Heisenberg (Artist, Author and Filmmaker)
Schläfer / Sleeper (Austrian-German Film 2005, Original with English subtitles)
Benjamin Heisenberg’s 2005 film Schläfer / Sleeper - giving some of the most accurate
cinematic representations of laboratory life - shows actors Bastian Trost, Mehdi Nebbou
and Loretta Pflaum in a story of rivalry and treachery set in a triangle of love, science
and politics. Conceived in the aftermath of 9/11 and the ensuing security legislation, it
paints an intimate picture of an unsettled society undermined by a silent epidemic of
suspicion. Johannes, a new assistant at the university, is asked to provide reports on
Farid, an Algerian Postdoc - who is suspected of being a sleeper. He refuses, but a seed
of doubt has been planted. A fragile friendship overshadowed by competition in the lab
and rivalry in their relationship with Beate, a joint friend, eventually leads to betrayal.
„My approach to the story was to interweave the political level in a delicate way with
the characters’ private conflicts in order to make the subtle corruption of the characters
perceptible.” (B. Heisenberg, 2005) Schläfer received numerous awards, among them
the Midas Prize, EuroPAWS, for the best fiction drama set in science and technology,
and was screened at the Cannes Film Festival 2005. The Cinema Bernstein screening of
the film, open to the general public, will feature a discussion with artist, author and
filmmaker Benjamin Heisenberg. Born 1974 in Tübingen, Heisenberg grew up near
Würzburg and studied sculpting (1993-1999) and filmmaking (1997-2005) in Munich.
He has directed three feature films, numerous short films and is a founding editor of the
filmmagazine Revolver. Most recently he co-designed the public artwork at the Munich
Documentation Centre for the History of National Socialism.
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Special Events

The Funder’s Hour
Wednesday, September 13, 17:30
Venue: Central Lecture Hall (ZHG), first floor, room 105
with Barbara Pauly (HFSP Director of Fellowships) and
Jérémie Barral (NYU, Long-Term Fellow)
HFSP: Funding International Research Collaborations in the Life Sciences
Computational and theoretical neuroscience can open up novel avenues towards under-
standing the nervous system by integrating methods and concepts of natural sciences, life
science and engineering. This year’s Bernstein Conference features The Funder’s Hour
to provide an exchange forum for funding agencies, which support such trans-disciplinary
frontier research and the computational neuroscience community. The Funder’s Hour
2017 will present the Human Frontier Science Program (HFSP). HFSP has been sup-
porting frontier research on the complex mechanisms of living organisms since 1990.
HFSP Director of Fellowships Barbara Pauly will describe HFSP’s funding aims and
principles (HFSP: Funding International Research Collaborations in the Life Sciences).
HFSP Long-Term Fellow Jérémie Barral (NYU) will report about his HFSP experience
and show some highlights of his HFSP funded research (Synaptic scaling to maintain
neuronal dynamics and propagate information). The short presentations will be followed
by a moderated questions and answers session.

Public Lecture (in German)
Wednesday, September 13, 20:00
Venue: Alte Mensa, Wilhelmsplatz 3, 37073 Goettingen
Niels Birbaumer
Abolishment of the locked-in state with a Brain-Machine-Interface (BMI)
Gehirn-Maschine-Verbindungen: Wem nutzen sie?
Completely locked-in patients (CLIS) cannot communicate with any motor response
despite intact cognitive and emotional response systems. Four ALS (amyotrophic lateral
sclerosis) patients in CLIS learned to respond with a brain oxygenation and deoxygenation
change of frontal brain areas using portable NIRS (near infrared spectroscopy) to short
questions requiring a yes or no response presented auditorily within 15 seconds. CLIS
duration in the four patients has lasted from 4 months to eight years and was validated
with EOG measurement during all sessions. Each session contained 20 to 60 questions
(half with yes and half with no answers). All experiments take place at the home of
patients. Questions with known answers were used to train a support vector machine
classifier (SVM). After achieving 70% correct answers open questions were asked and
feedback of the classified answer was provided to the patients. EEG from 6 electrodes
served to control sleep and vigilance decrement: questions were interrupted if sleep-
like patterns appeared. 16 to 60 sessions over several months assured stability of
communication with an average correct response rate of more than 70% to known and
90% correct answers to open questions. Among open questions quality of life questions
were asked on a weekly basis to three of the patients with longer CLIS duration, all
patients report good quality of life as previously reported by our group. Open questions
answers are validated by stability over time, information of family and care takers,
sentences with semantic errors and face validity (i.e. pain questions during periods of
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intense pain due to decubitus and other illness related problems). These results suggest
that brain machine interfaces using metabolic brain signals may end the unbearable
silence of CLIS.
Supported by the Deutsche Forschungsgemeinschaft (DFG),The Eva and Horst Koehler-
Stiftung, Bundesministerium fuer Bildung und Forschung (BMBF, Motor-Bic), Stiftung
Volkswagenwerk (VW), Wyss Center for Bio and Neuroengineering, EU Horizon 2020:
LUMINOUS. The lecture is brought to you with friendly support of the Otto Bock
HealthCare GmbH.

Brains for Brains Award 2017
The Brains for Brains Award is an initiative of the Bernstein Association for Compu-
tational Neuroscience. Since 2010, the Brains for Brains Award honors outstanding
young international scientists who achieved a peer-reviewed scientific publication before
starting their doctoral thesis. It consists of a travel fellowship of 2,000 e covering their
trip to Germany, participation in the Bernstein Conference and two individually planned
visits to selected Computational Neuroscience labs in Germany. This year’s award will
go to Elise Genevieve Rowe (Monash University, Melbourne, Australia). She will present
a poster during the poster session on Thursday, September 14. Additionally, she will
give a short talk during the award ceremony on Friday, September 15.

Bernstein Network Computational Neuroscience Information Booth
The Bernstein Network is a research network in the field of computational neuroscience;
this field brings together experimental approaches in neurobiology with theoretical models
and computer simulations. The network started in 2004 with a funding initiative of
the Federal Ministry of Education and Research to promote the transfer of theoretical
insight into clinical and technical applications. Today, after 10 years of funding by the
Federal Ministry, the Bernstein Network has over 200 research groups. It is named after
the German physiologist and biophysicist Julius Bernstein (1839-1917).
The Bernstein Network comprises three central facilities, which are represented at the
information booth:

Bernstein Coordination Site (BCOS)
BCOS is the connecting link to partners in science, industry, politics and the general
public. It oversees a large information pool and can provide valuable networking
resources. BCOS activities are aimed at facilitating scientific encounter, supporting
young researchers and public outreach. The SMARTSTART Joint Training Program in
Computational Neuroscience, which is coordinated by BCOS, prepares young researchers
for a career in computational neuroscience. Information on all services can be gained
during poster sessions.
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Special Events

German Neuroinformatics Node (G-Node)
During the conference, the G-Node will present their new data management service
GIN. GIN is a free service for managing, sharing, and publishing research data. It
features versioned storage, multi-user access for collaboration, and publishing of data
using persistent identifiers (DOI). The G-Node invites all conference participants to
try out the new service: bring your data, discuss your data management needs, hear
about upcoming features. Demos will be given during poster sessions and coffee breaks.
Walk-ins are welcome any time during the conference.

Bernstein Facility for Simulation and Database Technology (SimLab
Neuroscience)
High Performance Computing (HPC) can help your neuroscience projects. SimLab
Neuroscience, at the Juelich Supercomputing Centre, provides advanced support in the
fields of data analysis, modeling, simulation, HPC methods and visualization. It also
offers tutorials, workshops, and courses to help you make the transition to HPC.
Come and meet us at the booth and find out what the Bernstein Facilities can do for you.

Further events at the Bernstein Network Information Booth:

Wednesday, September 13
15:30 BCOS Travel Grants: Award ceremony and group picture

Bernstein Association for Computational Neuroscience
The Bernstein Association for Computational Neuroscience supports research and educa-
tion in computational neuroscience and reaches out to the general public to bring across
research topics and current findings. The Bernstein Association was founded in 2009
by members of the Bernstein Network and is recognized as a non-profit organization.
Everyone who is active in the field of computational neuroscience or related subjects can
become a member of the Bernstein Association. The general assembly usually takes place
at the annual Bernstein Conference. More information can be found at the Bernstein
Network Information Booth or on the website (www.nncn.de/en/bernstein-association)

Thursday, September 14
14:15 –
15:15

General Assembly 2017 Bernstein Association for Computational Neuro-
science (Room 005) – for members only
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Invited Talks

[I 1] The Stabilized Supralinear Network, or, The Importance of Being
Loosely Balanced
Kenneth Miller1

1. Center for Theoretical Neuroscience, Columbia University, 3227 Broadway, L6-070, Mail Code 9864,
New York, NY 10027 , USA

I will describe the Stabilized Supralinear Network mechanism and its application to
understanding sensory cortical behavior. The mechanism is based on a network of
excitatory (E) and inhibitory (I) neurons with very simple assumptions: (1) Individual
neurons have an expansive or supralinear input/output functions, e.g. a power law with
power >1; (2) Feedback inhibition is sufficiently strong to drive the network to a stable
fixed point for a given stable input. The expansive input/output function leads effective
synaptic strengths to grow with network activation. The network then transitions, with
increasing external input strength, between two regimes: (1) For weak activation, the
network is very weakly coupled, with neuronal input dominated by external input (from
outside the network) rather than network input. In this regime, responses to different
stimuli sum supralinearly, and hence different stimuli tend to facilitate one another’s
response. (2) For stronger activation, the network becomes strongly coupled, with
input dominated by network input; and recurrent excitation becomes strong enough
to potentially create network instability, but the network is stabilized by feedback
inhibition. With increasing activation the network input is more and more dominated by
inhibitory input. In this strongly-coupled regime, the network is loosely balanced: the
E/I dynamics lead network input to partially cancel external input, so that the net input
grows sublinearly as a function of the external input. This turns out to be equivalent to
the "balanced network" of Van Vreeswijk and Sompolinsky, but in a regime in which
the net input remaining after cancellation is comparable to the components that are
cancelled ("loose balance") rather than being negligibly small in comparison ("tight
balance"). This makes all the difference for network behavior: whereas tight balance
yields network response that is a linear function of external input, loose balance yields
nonlinear behaviors that look strikingly like sensory cortical behaviors. These behaviors
include "normalization" or sublinear summation of responses to multiple stimuli that
becomes linear for weak stimuli and becomes "winner-take-all" for stimuli of strongly
unequal strength; and surround suppression that becomes surround facilitation for a
weak center stimulus. In addition, whereas tight balance creates an asynchronous regime
(without correlations), loose balance allows correlated variability that is gradually

©(2017) Miller K
Cite as: Miller K (2017) The Stabilized Supralinear Network, or, The Importance of Being Loosely
Balanced. Bernstein Conference 2017 Abstract. doi: 10.12751/nncn.bc2017.0001
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[I 2] Attractor dynamics in networks with learning rules inferred from
data
Nicolas Brunel1

1. Departments of Statistics and Neurobiology, The University of Chicago, 947 E. 58th St., MC0926,
Chicago, IL 60637 , USA

The attractor neural network (ANN) scenario is a popular scenario for memory storage in
association cortex, but there is still a large gap between these models and experimental
data. In particular, the distributions of the learned patterns and the learning rules are
typically not constrained by data. In primate IT cortex, the distribution of neuronal
responses is close to lognormal, at odds with bimodal distributions of firing rates used in
the vast majority of theoretical studies. Furthermore, we recently showed that differences
between the statistics of responses to novel and familiar stimuli are consistent with
a Hebbian learning rule whose dependence on post-synaptic firing rate is non-linear
and dominated by depression. We investigated the dynamics of a network model in
which both distributions of the learned patterns and the learning rules are inferred
from data. Using both mean field theory and simulations, we show that this network
exhibits attractor dynamics. Furthermore, we show that the storage capacity of networks
with learning rules inferred from data is close to the optimal capacity, in the space of
unsupervised Hebbian rules. These networks lead to unimodal distributions of firing rates
during the delay period, consistent with data from delay match to sample experiments.
Finally, we show there is a transition to a chaotic phase at strong coupling strength,
with a extensive number of chaotic attractor states correlated with the stored patterns.

©(2017) Brunel N
Cite as: Brunel N (2017) Attractor dynamics in networks with learning rules inferred from data. Bernstein
Conference 2017 Abstract. doi: 10.12751/nncn.bc2017.0002

[I 3] Control of variability in motor learning
Adrienne Fairhall1

1. Department of Physiology and Biophysics, University of Washington, HSB Rm G311, Box 357290,
Seattle WA 98195-7290, USA

The birdsong learning circuit presents an outstanding opportunity to explore the explicit
realization of the computational algorithms of learning in a biological network at the
level of detailed anatomy, circuit dynamics and neuronal biophysics. We will discuss
biological mechanisms of variability generation and control that may underlie the bird’s
capacity to learn, monitor and maintain song quality.

©(2017) Fairhall A
Cite as: Fairhall A (2017) Control of variability in motor learning. Bernstein Conference 2017 Abstract.
doi: 10.12751/nncn.bc2017.0003

15

https://doi.org/10.12751/nncn.bc2017.0002
https://doi.org/10.12751/nncn.bc2017.0003


Invited Talks

[I 4] Spiking neurons can discover predictive features by aggregate-label
learning
Robert Guetig1

1. Max Planck Research Group Theoretical Neuroscience, MPI for Experimental Medicine, Herrmann-
Rein-Straße 3, 37075 Göttingen, Germany

The brain routinely discovers sensory clues that predict opportunities or dangers. However,
it is unclear how neural learning processes can bridge the typically long delays between
sensory clues and behavioral outcomes. Here, I introduce a learning concept, aggregate-
label learning, that enables biologically plausible model neurons to solve this temporal
credit assignment problem. Aggregate-label learning matches a neuron’s number of
output spikes to a feedback signal that is proportional to the number of clues but carries
no information about their timing. Aggregate-label learning outperforms stochastic
reinforcement learning at identifying predictive clues and is able to solve unsegmented
speech-recognition tasks. Furthermore, it allows unsupervised neural networks to discover
reoccurring constellations of sensory features even when they are widely dispersed across
space and time.

©(2017) Guetig R
Cite as: Guetig R (2017) Spiking neurons can discover predictive features by aggregate-label learning.
Bernstein Conference 2017 Abstract. doi: 10.12751/nncn.bc2017.0004

[I 5] Understanding retinal response through the lens of prediction
Stephanie E. Palmer1

1. Department of Organismal Biology and Anatomy, University of Chicago, 1027 E 57th St, Chicago, IL
60637, USA

Prediction is necessary for overcoming short timescale sensory and motor delays present
in all neural systems. In order to interact appropriately with a changing environment,
the brain must respond not only to the current state of sensory inputs but must also
make rapid predictions of these inputs’ future state. To test whether the visual system
performs optimal predictive compression and computation, we compute the past and
future stimulus information in populations of retinal ganglion cells, the output cells of
the retina, in salamanders and rats. For some simple stimuli with mixtures of predictive
and random components to their motion, we can derive the optimal tradeoff between
compressing information about the past stimulus while retaining as much information
as possible about the future stimulus. By changing parameters in the input motion, we
can explore qualitatively different motion prediction problems. This allows us to begin
to ask which prediction problems the retina has evolved to solve optimally. Furthermore,
we explore the tradeoffs between optimally representing predictive information in the
stimulus, and decorrelating neural responses in time.

©(2017) Palmer SE
Cite as: Palmer SE (2017) Understanding retinal response through the lens of prediction. Bernstein
Conference 2017 Abstract. doi: 10.12751/nncn.bc2017.0005
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[I 6] Principles of local and long-range organisation of cortical circuits
Thomas Mrsic-Flogel1

1. Biozentrum, University of Basel, Klingelbergstrasse 50 / 70, CH - 4056 Basel, Switzerland

The rules by which neurons in neocortex choose their synaptic partners are not fully
understood. In sensory cortex, intermingled neurons encode different attributes of
sensory inputs and relay them to different long-range targets. The first part of the talk
will discuss how local connectivity is constrained by response similarity and long-range
projection target in mouse primary visual cortex (V1). The second part of the talk will
focus on the organisation of long-range connectivity patterns of V1 neurons, revealing
that most neurons innervate multiple intracortical targets and thus act to coordinate
activity across subsets of cortical areas.

©(2017) Mrsic-Flogel T
Cite as: Mrsic-Flogel T (2017) Principles of local and long-range organisation of cortical circuits.
Bernstein Conference 2017 Abstract. doi: 10.12751/nncn.bc2017.0006

[I 7] Neural circuits for visual processing in thalamus
Judith Hirsch1

1. Department of Biological Sciences, University of Southern California, Allan Hancock Foundation
Building, Los Angeles, CA 90089-0371, USA

The thalamus is often viewed as a gatekeeper, relaying sensory signals to the cortex
during waking and halting their flow during sleep. While true, this is an impoverished
description. Our work explores how thalamic circuits contribute to sensory processing per
se. We focus on the lateral geniculate nucleus, which conveys information from the eye
downstream. Relay cells in the geniculate make few connections with each other but are
embedded in two dense inhibitory networks. First, local Interneurons supply feedforward
inhibition; second, neurons in the visual sector of thalamic reticular nucleus (a thin sheet
of gabaergic cells that cloak the thalamus) provide feedback inhibition. The initial part
of the presentation explores how retinogeniculate divergence and convergence, coupled
with feedforward inhibition, might facilitate signal detection and enhance perceptual
acuity. The later part explores the role of the reticular nucleus, from the perspectives of
feature detection and spatial attention.

©(2017) Hirsch J
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Abstract. doi: 10.12751/nncn.bc2017.0007

17

https://doi.org/10.12751/nncn.bc2017.0006
https://doi.org/10.12751/nncn.bc2017.0007


Invited Talks

[I 8] Cerebral Cortex Connectomics
Moritz Helmstaedter1

1. Department of Connectomics, Max Planck Institute for Brain Research, Max-von-Laue-Str. 4, 60438
Frankfurt am Main, Germany

The mapping of neuronal connectivity is one of the main challenges in neuroscience. Only
with the knowledge of wiring diagrams is it possible to understand the computational
capacities of neuronal networks, both in the sensory periphery, and especially in the
mammalian cerebral cortex. Our methods for dense circuit mapping are based on
3-dimensional electron microscopy (EM) imaging of tissue, which allows imaging nerve
tissue at nanometer-scale resolution across substantial volumes (typically hundreds of
micrometers per spatial dimension) using Serial Block-Face Scanning Electron Microscopy
(SBEM). The most time-consuming aspect of circuit mapping, however, is image analysis;
analysis time far exceeds the time needed to acquire the data. Therefore, we developed
methods to make circuit reconstruction feasible by increasing analysis speed and accuracy,
using a combination of crowd sourcing and machine learning. We have applied these
methods to circuits in the mouse retina and improved them for the application to much
larger neuronal circuits in the cerebral cortex. We are currently mapping the local circuit
structure of different cortices in various species. The goal is to measure the invariants
of circuit structure between individuals and across mammalian species, in search for
the algorithms of sensory perception. Future work will include the search for engrams
of sensory experience in the cerebral cortex, and for alterations in neuronal network
structure in psychiatric disease.
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[I 9] From Connectivity to Rate Dynamics - Successes and Failures of
the Mean-Field Approach
Merav Stern1

1. Department of Applied Mathematics, University of Washington, 303 Lewis Hall, Seattle 98105, USA

Mean-field theory is commonly used to analyze the dynamics of large neural network
models. In this approach, the interactions of the original network are replaced by
appropriately structured noise driving uncoupled units in a self-consistent manner. This
allows properties of the network dynamics to be predicted and the behavior of the
network to be understood as a whole. Results in random matrix theory have been
used to relate the structure of the connectivity of neural networks to their mean-field
dynamics. In my talk I will explain the mean-field approach, discuss its relation to
random matrix theory, and analyze how the dynamics of neural network models are
related to their connectivity structure. I will provide examples of networks that the
mean-field theory describes accurately as well as examples, analyzed with the use of
matrix theory, in which small modifications in the connectivity matrix can result in large
deviations from mean-field predictions.
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[I 10] The dynamic architecture of the adult visual cortex: how to keep
my brain young?
Siegrid Löwel1

1. Department of Systems Neuroscience, Johann-Friedrich-Blumenbach Institut für Zoologie und An-
thropologie, Georg-August-Universität Göttingen, Von-Siebold-Str. 6, 37075 Göttingen, Germany

My lab is focused on understanding the development and plasticity of neuronal circuits
in the mammalian cortex. We use a combination of techniques, including various
imaging/physiological techniques and behavioural analyses to explore how experience
and learning influence the structure and function of nerve cell networks and how activity
patterns and genetic factors influence these processes. We hope that answering these
key questions not only helps to understand the rules underlying brain development,
functioning and learning but additionally will open up new avenues to develop clinically
relevant concepts to promote regeneration and rehabilitation for diseased and injured
brains. In my lecture, I will focus on recent experiments about the role of various
stimulating environments on visual cortical plasticity in mice. In addition, I will present
a completely new molecular mechanism governing both the duration of a critical period
in early postnatal development and the maturation of nerve cell contacts.

©(2017) Löwel S
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[I 11] The anterior cingulate cortex in learning and changing behaviour
Matthew Rushworth1

1. Oxford Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford,
OX1 3UD, UK

The dorsal anterior cingulate cortex (dACC) is one of the brain areas that has received
most attention from cognitive neuroscientists using techniques from EEG to fMRI.
Activity in dACC has been linked with a variety of processes such as error detection and
cognitive control. DACC is often linked to the most sophisticated features of human
behaviour even though dACC is present in many species. I will argue that dACC can be
related to basic computations that many animals including humans perform to decide
whether to maintain or change their current course of action. It carries activity relating
to the average value of alternative courses of action available in the environment and it
tracks how successful recent behaviour has been over multiple time scales. This means
that it can track whether current behaviour is more or less successful than it has been
recently and whether a change in behaviour is likely to be more successful. Discerning
such trends makes predicting the value of future behaviour possible. Time-scale specific
interactions occur with representations with similar characteristics in a limited number
of other brain areas. Individual variation in neurotransmitter levels in dACC (glutamate
and GABA) can be related to individual variation in the way in which experience is used
to influence behaviour.

©(2017) Rushworth M
Cite as: Rushworth M (2017) The anterior cingulate cortex in learning and changing behaviour. Bernstein
Conference 2017 Abstract. doi: 10.12751/nncn.bc2017.0011

[I 12] The magical number zero
Andreas Nieder1

1. Lehrstuhl Tierphysiologie, Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany

Zero stands for emptiness, for nothing - and yet it is considered to be one of the
greatest achievements of humankind. However, zero is a most abstract and difficult
concept. It took a long stretch of human history for zero to be recognized. Children
show a delayed understanding of numerosity zero, long after they comprehend positive
integers. Only advanced animals with which we share a nonverbal quantification system
exhibit rudiments of a grasp of zero numerosity. For a brain that has evolved to
process sensory stimuli, conceiving of empty sets (“nothing”) as a meaningful category
(“something”) demands high-level abstraction. Our single-neuron data recorded in
nonhuman primates suggest a parieto-frontal processing hierarchy along which empty
sets are steadily detached from visual properties and gradually positioned in a numerical
continuum. Based on converging evidence from different disciplines like history of
mathematics, developmental psychology, animal cognition, and neurophysiology, I will
argue that the emergence of zero passes through four corresponding representations in
all of these interrelated realms: first sensory “nothing”, next categorical “something”,
then quantitative empty sets, and finally the number zero. The concept of zero shows
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how the brain, originally evolved to represent stimuli, detaches from empirical properties
to achieve ultimate abstract thinking.
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[I 13] Single-trial decisions are accurately predicted by inhibitory neural
population activity
Anne Churchland1

1. Churchland Lab, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724,
USA

Decisions are driven by the coordinated activity of diverse neural populations in multiple
structures. Inhibitory neurons play a critical role in many models of decision-making, but
the difficulty in measuring large inhibitory populations in behaving animals has left their
in vivo role mysterious. To understand the contributions of excitatory and inhibitory
neural populations to perceptual decision-making, we measured neural responses in
transgenic mice expressing tdTomato in inhibitory neurons (GAD2-Cre crossed with
Ai14 reporter line). To record neural activity, mice were injected with AAV9-Synapsin-
GCaMP6f in the posterior parietal cortex (PPC). Mice were then presented with a series
of multisensory “events” (clicks and flashes), the rate of which fluctuated stochastically
over a 1000 ms period. Mice were trained to lick to a right (left) spout to report that
event rates were judged above (below) an abstract category boundary (16 Hz). 2-photon
imaging was used to measure single-neuron responses during these decisions. In each
session, 600 neurons were simultaneously recorded while mice performed 400 trials.
To evaluate the relationship between neural activity and decision-making, we trained
linear classifiers to distinguish activity preceding left vs. right choices on single trials. In
keeping with previous work, we observed that overall population activity could reliably
predict the animal’s choice. To understand how specific cell types shape this population
activity, we evaluated excitatory and inhibitory neurons separately. Surprisingly, inhibitory
population activity alone could reliably predict the animal’s choice at a level that was
indistinguishable from excitatory neurons. Importantly, the distributions of weights
assigned by the classifiers were similar for excitatory and inhibitory populations. This
argues that for both cell types, the pooled activity of many neurons can effectively
distinguish decision outcomes. These findings argue in favor of decision-making models
in which pools of inhibitory neurons are specifically targeted by populations of excitatory
neurons in favor of a particular choice.
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[C 1] Effects of short-term plasticity on the memory lifetime of recurrent
neural circuits
Sofia Jativa1, Taro Toyoizumi2

1. Gatsby Computational Neuroscience Unit, UCL, 25 Howland St, Fitzrovia, London W1T 4JG, United
Kingdom

2. Lab for Neural Computation and Adaptation, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako,
Saitama 351-0198, Japan

See also Poster: W 33
It is a substantial open challenge to understand how recurrent neural circuits can act
as a memory buffer, despite fast forgetting by individual neurons. Previous work has
primarily focused on understanding memory lifetimes of recurrent circuits with conven-
tional static synapses. However, synapses are rich dynamical systems in their own
right, and recent experimental findings [1,2] along with previous theoretical proposals
[3,4] im- plicate these characteristics as supporting short-term memory. Recently, an
information-theoretic upper bound for memory lifetime was derived for linear recurrent
networks. Specifically, it was shown that any linear network can, at most, achieve a
memory life time proportional to the number of neurons in the network. Furthermore,
it was shown that only a delay line, or any network that is equivalent to a delay line
up to a unitary transformation, can saturate this bound [5]. Here, we ex- tend this
information-theoretic analysis to understand the role of dynamic synapses with short-
term plasticity on memory performance. By linearizing a non-linear network, we study
how short term plasticity modifies the effective connectivity matrix of the network to
change the memory performance. We tested this framework in different architectures,
concentrating on networks with very poor memory performance i.e. normal networks.
We show that dynamical synapses modify the internal structure of these networks and
improve their memory performance. We will analyze the conditions under which memory
performance is improved and under which the effective connectivity matrix approximates
an effective delay line. We expect that the short-term plasticity of synapses might be key
for understanding how recurrent neural circuits buffer temporal signals during cognitive
processing, and furthermore it suggests a different way for synapses to be considered as
a neural substrate of working memory.
Acknowledgements
We would like to thank Peter Dayan for advice and discussions
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[C 2] Sequential neuromodulation of Hebbian plasticity offers a
mechanism for effective reward-based navigation
Sara Zanonne1, Zuzanna Brzosko2, Ole Paulsen2, Claudia Clopath1

1. Bioengineering , Imperial College London
2. Department of Physiology, Cambridge

See also Poster: T 38
Neuromodulation is thought to act as a supervisory or modulatory signal by providing
feedback about the environment. It has been shown to play a fundamental role in
acquiring new behaviours. However, it is still unclear how neuromodulated learning is
attained at the synaptic level. We decided to investigate this by combining experimental
and computational methods.
Our experimental data on mouse hippocampal slices show that acetylcholine bias spike-
timing dependent plasticity (STDP) towards depression (Brzosko et al., in submission),
while the subsequent application of dopamine retroactively converts synaptic depression
into potentiation, effectively acting as an eligibility trace (Brzosko et al., eLife, 2015;
Brzosko et al., in submission).
We therefore set out to explore the computational and behavioural potential consequences
of these findings. We incorporated our novel sequentially-modulated plasticity rule in a
spiking network model of a reward-based navigation task (Fremaux et al., 2013). In
agreement with previous network models of reinforcement learning, our results indicate
that dopamine-modulated STDP enables learning of associations between actions and
delayed rewards. Our modelled agent can successfully navigate to the reward location.
Furthermore, the addition of cholinergic depression enables learning from negative
outcomes. This allows for flexible learning and relearning, especially useful in a real-
world, changing environment.
Thus, temporally sequenced neuromodulation of STDP not only enables associations to
be made between actions and outcomes, but also provides a possible mechanism for
aligning the timescales of cellular and behavioural learning .

Temporally sequenced cholinergic and dopaminergic modulation of STDP yields
effective navigation towards changing reward locations.
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[C 3] The foveal visual representation of the primate superior colliculus
Ziad M. Hafed1,2, Chih-Yang Chen1,2, Claudia Distler3, Klaus-Peter Hoffmann4

1. Physiology of Active Vision, Werner Reichardt Centre for Integrative Neuroscience, Tuebingen,
Germany

2. Cognitive Neurology, Hertie Institute for Clinical Brain Research, Tuebingen, Germany
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See also Poster: W 97
A primary reason for using non-human primates in visual neuroscience is their foveated
retina. However, neurophysiological investigations of foveal representations are not
common because of difficulties with eye movements and small response field (RF) sizes.
This creates a pressing need to study foveal representations, especially given that foveal
processing is a mode of operation that we rely on heavily in our daily life. Here we
recorded from the foveal visual representation of the superior colliculus (SC) in 2 awake
and 2 anesthetized monkeys. In the awake animals, we recorded from 121 neurons with
foveal preferred eccentricities and compared their visual RF characteristics to those of
>200 more eccentric neurons. We corrected for eye position during fixation to obtain
better estimates of RF shapes and sizes. In the anesthetized animals, we densely mapped
preferred RF locations and related them to SC anatomy, mapping 66 foveal sites and
comparing them to >100 more eccentric ones. We systematically moved our electrodes
by 100, 250, or 500 micrometer steps along the two-dimensional SC surface. Foveal SC
neurons’ RF’s were strongly skewed and lateralized, having sharp cutoffs at the “foveal
edge” of the visual representation. RF skew decreased progressively with increasing
eccentricity, along with an exponential increase in RF size. Such increase also happened
within the central foveola region (<0.5 deg radius), suggesting non-uniform sampling
of visual space by the SC even within the smallest eccentricities. Foveal visual neural
sensitivity was also as strong as, if not marginally stronger, than peripheral neural
sensitivity. Our dense mappings of SC surface topography revealed a highly orderly
foveal representation, which was continuous with peripheral topography. We used our
mappings to develop a 3-D model of the SC’s topographic foveal visual representation,
demonstrating more than twice the foveal magnification factor predicted by classic
models that extrapolated peripheral measurements. In all, our results demonstrate
strong laterality of visual representations in the foveal SC, non-uniform sampling of
space, high neural sensitivity, and a surprisingly large foveal magnification factor. The
magnification and continuity of foveal topography at this level of detail have implications
on the potential impacts of small eye movements on visual coding, and might also
explain certain characteristics of microsaccade amplitude distributions.

Illustration of increased foveal magnification in SC. (A) Iso-eccentricity (blue) and
iso-direction (red) lines from data. (B, C) Classic model (Ottes et al., 1986; yellow)
and our model (green). The classic model, based on extrapolation from periphery,
grossly underestimates foveal magnification.
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[C 4] High cellular and columnar variability underlies the absence of
early orientation selectivity
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See also Poster: T 97
Selectivity for stimulus orientation is a fundamental property of primary visual cortex
in primates and carnivores, where it is organized into a smoothly varying columnar
map that emerges in an activity-dependent manner during early postnatal life. Despite
extensive experimental and theoretical work, it remains unclear what factors limit the
emergence of orientation selectivity, such as weak responsiveness to visual stimuli, high
trial-to-trial variability, and/or an intermixed ’salt-and-pepper’ organization of orientation
preferences at the cellular level. To distinguish between these potential factors, we
visualized population activity in the visual cortex of developing ferrets with longitudinal
imaging of GCAMP6s at both cellular resolution with two-photon calcium imaging and
columnar resolution with widefeld epifluorescence imaging. Prior to eye opening, we
show that cellular and population responses evoked by single presentations of a grating
stimulus surprisingly exhibit robust, modular patterns of network activity resembling
activity patterns evoked by gratings in mature animals. However, the spatial location and
pattern of domains activated by presentation of the identical stimulus orientation varies
substantially across trials, a variability that accounts for the low orientation selectivity of
individual neurons and the inability to visualize coherent maps of orientation preference.
Yet variability in network activity patterns is not a general feature of the developing
cortex, as the modular patterns of network activity evoked by uniform luminance steps
are already selective at these ages. Furthermore, we show that trial-averaged activity
patterns evoked by gratings show similarity to the mature orientation map as early
as 1-2 days prior to eye opening. We conclude that the early disassociation between
stimulus orientation and consistent patterns of modular network activity is a major
factor underlying the absence of orientation selectivity in a developing cortical network
already exhibiting highly modular functional organization.
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[C 5] Economic and topological trade-offs in the human connectome
Leonardo L. Gollo1, James A. Roberts 1, Vanessa L. Cropley2, Maria A. Di Biase2, Andrew
Zalesky2, Michael Breakspear1

1. Genetics & Computational Biology Department , QIMR Berghofer, Australia
2. Melbourne Neuropsychiatry Centre and Melbourne School of Engineering, The University of Melbourne,

Australia

See also Poster: T 8
The brain resides in an evolutionary landscape that pits the costs of its anatomical
wiring against the computational advantages conferred by its complexity. The processes
shaping this exchange remain poorly understood. We address this problem by studying
random variants of the connectome that introduce subtle perturbations to network
topology while preserving the geometrical embedding and wiring length of the brain.
We first show that the presence of hubs widely distributed throughout cortical regions
confers a wiring cost that the human brain minimizes. Although slight perturbations of
brain networks reduce the wiring length of inter-hub connections, these perturbations
quickly disconnect inter-hemispheric links to prefrontal hubs and yield daughter networks
that substantially differ from one another. If the variation in structure is permitted
to accumulate, strong peripheral connections progressively connect to central nodes
and hubs shift toward the middle of the brain. Progressive randomization of brain
networks also leads to a topologically unstable intermediate regime consistent with a
phase transition in complex systems. Intriguingly, the fragility of hubs to disconnections
shows a significant association with the acceleration of grey matter loss in schizophrenia
that is stronger than the association with hub strength. Together with effects on wiring
cost, we suggest that fragile prefrontal hub connections and topological instabilities act
as evolutionary influences on complex brain networks whose set point may be perturbed
in neurological and psychiatric disorders.
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[C 6] Visual exploration and generation of connectivity in neural
networks: bridging the gap between empirical data and theoretical
model definition.
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Brito4, Pablo Toharia4, Susana Mata3,4, Oscar D. Robles3,4, Luis Pastor3,4, Juan J.
Garcia-Cantero3, Alexander Peyser1
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2. MRG Structure Of Memory, Ruhr-Universität Bochum, Bochum, Germany
3. Universidad Rey Juan Carlos, Madrid, Spain
4. Center for Computational Simulation, Universidad Politécnica de Madrid, Madrid, Spain

See also Poster: T 9
The study of connectivity is central in the diverse disciplines of neuroscience. On
one hand, the structured definition of network connectivity is an essential step in
network simulations. On the other hand, we can derive connectivity information from
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experimental data and various theoretical models at multiple scales. However, the
connectivity information in these two contexts is represented differently. This results in
a language gap limiting the flow of knowledge learned at different levels of abstraction.
In this work, we present a first step in the creation of a shared visual language to bridge
this gap between model based and empirical neuroscience, allowing us to work towards
a single integrated representation of the brain.
We have developed a visual and source-agnostic interactive interface to generate connec-
tivity in neural networks at various scales. Based on NeuroScheme [1] and the Connection
Set Algebra (CSA)[2], we can generate connectivity and use it in simulator-specific
scripts to later perform simulations of the dynamics of the network. Our approach allows
us to interactively create, explore and visualize connectivity even for large scale networks
where probability based connections are used to describe the synapse generation. Here
we show initial results of the tool applied to Potjan’s and Diesmann microcircuit model
as an initial use case for describing and exploring the connectivity.
With this approach, we offer the neuroscientific community a generic tool for the
easy generation and exploration of connectivity. The lack of dependency on a specific
simulator makes this tool a good starting point for validation of complex neural network
models using many simulation and emulation platforms, particularly when coupled. Our
future applications involve incorporating this tool to complete workflows consisting
of raw data processing, interactive exploration, creation and visualization of abstract
connectivity models, simulation, analysis and validation.

Diagram showing our approach to bridge empirical and theoretical connectivity repre-
sentations
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[C 7] A state space model for change point detection in multivariate
spike count data
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Mannheim, Central Institute of Mental Health, Medical Faculty Mannheim/ Heidelberg University, J
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See also Poster: T 22
Neural activity from higher cortical areas in awake, behaving animals has highly dynamic
and strongly nonstationary population-wide response properties. Nonstationary events
in the form of changes in the firing rate statistics of recorded spike count time series
may arise from a variety of sources. They may encode features of the experimental
paradigm and could, potentially, correspond to the neural computations associated
with the performance of a given behavioural task. In order to identify nonstationary
events, or change points, in neural data, and to relate these events to behaviour, a
model-based approach to change point detection may bear certain advantages not
shared by model-free techniques. Here, we develop such an approach for detecting and
parametrising multiple changes in multivariate spike count data within the statistical
framework of State Space Models (SSM). The model assumes a nonlinear, nonstationary,
autoregressive Gaussian process, parametrised by by the onset of change and its time
scale, that captures relevant features of the underlying latent neural dynamics. Given
their discrete, nonnegative nature, high-dimensional spike count time series are generated
from the low-dimensional latent states through a Poisson observation model. We devised
an initialisation algorithm, a model selection method and an estimation procedure that
makes for a practical and efficient solution to change point identification from large data
sets, such as recordings from developmental studies. Model parameters are constrained
in a way that assures model identifiability, which we demonstrate by estimating latent
states and model parameters from synthetic data where the ground truth is known.
We also show that population-wide change points and their time scales can be reliably
estimated, even when this information is lost by the averaging effect of classical methods,
such as summarising data in peristimulus time histograms. As a real data example,
the model is fitted to multiple single unit recordings from rat medial prefrontal cortex
neurons during an operant rule switching task. The resulting reconstruction of the
underlying nonstationary dynamics allows matching the neural correlates of learning to
their behavioural counterpart by relating behavioural changes to population-wide change
points, as estimated by the model.
Acknowledgements
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[C 8] Single trail population activity of the fronto-parietal grasping
network evolves through three independent subspaces
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Neurons in the fronto-parietal grasping network are known to be modulated for perceptual
processing, movement preparation, and movement control1,2. Due to neuronal presence
of all three processes in the same network it is considered to be involved in the
transformation between the different kinds of information as well as decision making.
Yet, how this information is encoded and transformed in the system is still in debate.
We addressed this question using parallel recordings from many neurons in the fronto-
parietal grasping network (AIP and F5) of the macaque monkey while animals were either
visually instructed or freely chose to grasp a handle with one of two grip types. Classical
tuning analyses revealed all neurons in both areas to be significantly modulated by task
parameters. However, single-neuron response patterns were complex and dynamically
over time, and were heterogeneously distributed with no sign of categories. In contrast,
when we considered the whole neuronal population as one strongly interconnected
network, in which neural population activity evolves dynamically through space-space
over time and conditions, a clear low dimensional structure became apparent. Nearly
all task specific single trial activity could be explained by an evolution of just three
independent informational subspaces representing visual, preparatory, and movement
activity (Figure 1). Interestingly, for free-choice trials, where no specific visual information
was given, all task specific activity during the decision process was explained by the
preparatory space, suggesting that preparatory activity explains all decision related
activity in this task. Crucially, contributions to all three informational subspaces were
randomly distributed across the whole fronto-parietal neuronal population with no
significant category structure. Furthermore, a regularized recurrent neuronal network
trained to produce muscle activity could well reproduce the neuronal dynamics both at
the single unit and the population level. The fact that nearly all task specific single
trial neuronal variance across all neurons and areas can be understood as a dynamical
process evolving through just three information subspaces offers a new perspective on
the fronto-parietal grasp network. The independence of the visual, preparatory, and
movement subspaces even allows to disentangle and analyze their information separately,
which could be of great importance for decoding approaches.

Figure 1 (a) Schematic view of the behavioral task. (b) Anatomical network of all
parallel recorded neurons of one dataset3. (c) Single trial population dynamics of
fronto-parietal single units for the visual, preparatory, and movement subspace.
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Attention, reward, decision making

[W 1] Gamma oscillations organize top-down signaling to hypothalamus
and enable food seeking
Marta Carus-Cadavieco1, Maria Gorbati1, Li Ye2, Franziska Bender1, Suzanne van der
Veldt1, Christoph Börgers3, Yubin Hu1, Natalia Denisova1, Franziska Ramm1, Karl
Deisseroth2, Tatiana Korotkova1, Alexey Ponomarenko1
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/ NeuroCure Exzellenzcluster , Berlin, Germany

2. Department of Bioengineering and Department of Psychiatry and Behavioral Sciences, Stanford
University, Stanford, CA, USA

3. Department of Mathematics, Tufts University, Medford, MA, USA

Lateral hypothalamus (LH) is crucial for regulation of feeding, yet little is known about the
regulation of LH by top-down inputs from cognitive control regions. Top-down forebrain
innervation of LH is provided, to a large extent, by inhibitory inputs from the lateral
septum (LS), a key region for governing innate behaviors according to environmental
context; LS is connected, in turn, with cortical networks. Here we combined optogenetics
and computational modeling-guided high-density unitary recordings from these regions
in mice during spontaneous behavior in a free-access feeding paradigm (Carus-Cadavieco
et al., Nature, 2017). We found that food-seeking behavior relies on gamma (30-90
Hz) oscillations, coordinated between LH and upstream brain regions. When mice
engaged in approach to the food zone, the gamma power in LS and LH matched the
time required to reach the food zone, but not the drinking zone. Gamma-rhythmic input
to LH from somatostatin-positive LS cells evoked food approach without affecting food
intake. LS inhibitory input enabled separate signaling by LH neurons according to their
feeding-related activity, making them fire at distinct phases of the gamma oscillation.
Using CLARITY, in vivo electrophysiology and computational modeling, we identified
medial prefrontal cortex projections providing gamma-rhythmic inputs to LS, leading
to improved performance in a food-rewarded learning task. Conversely, LS and its
major afferent region, hippocampus, displayed coordination by theta rather than gamma
oscillations (Bender et al., Nature Communications, 2015). Overall, our study identifies
a novel top-down pathway, which utilizes gamma synchronization to guide activity of
subcortical networks and to regulate feeding behavior by dynamic reorganization of
functional cell groups in hypothalamus.
Acknowledgements
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[W 3] Effects of cognitive biases and imperfect reward predictions on
perceptual learning
David Higgins1,2, Michael Herzog3, Henning Sprekeler1,2
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Roving is a random task-sequencing paradigm, in perceptual learning, whereby multiple
tasks are learned in a randomly interleaved sequence. For certain experiments, such as
bisection tasks, human subjects appear to be unable to learn the individual tasks under
roving conditions. In general, theoretical descriptions of perceptual learning experiments
have resorted to approaches involving tuning of inputs, using either recurrence or
suppression. However, these approaches have exhibited only partial success in tackling
roving. In 2012, Herzog et al. proposed a theoretically inspired explanation involving a
constant drift in synaptic efficacies in the system (unsupervised bias), due to an inability
to maintain accurate task specific estimates of performance. This leads to a failure
to learn using feedback. We update this approach, adding additional features, which
though adding realism tend to counteract the action of the unsupervised bias. We then
use this model to examine whether the unsupervised bias is sufficient to explain roving
or not.
The proof-of-concept model proposed in Herzog et al. does indeed lead to a failure to
correctly learn during roving but, while it fails due to the mooted unsupervised bias in
the learning rule, the implementation relies on unbounded weight growth, an unrealistic
phenomenon. We introduce a simple weight normalisation term, to counteract the
unbounded weight growth, and implement a cognitive bias, often observed in human
subjects, towards 50:50 presentation ratios. We thus discover a more appropriate model
of human perceptual learning performance. Our model (i) learns correctly on a single
bisection or vernier task, (ii) fails to learn during roving of multiple tasks, (iii) exhibits the
human tendency towards 50:50 ratios of choice, thus failing when a 75:25 ratio is used,
and (iv) correctly learns when informed of the altered presentation ratio, similarly to
human subjects (unpublished data). A further extension to the original model, operating
on a much slower timescale, allows the task critic system to learn over time to separately
identify the tasks. This ultimately leads to learning of the initially unlearnable tasks, as
seen in much longer timescale experiments.
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[W 4] Optimal Deployment of Feature-based Attentional Gain in
Macaque Visual Cortex
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Attending to spatial locations or to non-spatial features has been shown to enhance
the gain of those neurons in primate visual cortex that preferentially respond to stimuli
matching these attended locations and features. Here we investigated how attention
affects the population responses of neurons in the middle temporal visual area of rhesus
monkeys to bi-directional movement inside the receptive field. The monkeys were
trained to detect a direction or speed change in the target motion direction, ignoring
the distractor motion. In control trials, monkeys instead focused their attention onto
the fixation spot. Population activity profiles for these two conditions were determined
by systematically varying the patterns’ directions while maintaining a constant angle
between them. As expected, the response profiles show two peaks representing the
strong response of the two groups of neurons preferring one of the two motion directions.
Switching spatial attention from the fixation spot into the receptive field resulted in an
enhanced activity of the neurons representing the attended stimulus and suppression
of the activity from the neurons representing the distractor in the neuronal population.
Furthermore, the population data indicated a direction-dependent attentional modulation
that does not peak at the target feature, but rather along the slopes of the activity
profile representing the target direction. Our results suggest that attentional gains are
differentially allocated to neuronal populations to optimize the discriminability of the
target direction, in line with an optimal gain mechanism (Navalpakkam and Itti, 2007).
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Behaviour and cognition

[W 5] Perceptual confirmation bias as a result of approximate
hierarchical inference
Richard D Lange1, Ankani Chattoraj1, Jacob Yates1, Ralf M Haefner1

1. BCS, University of Rochester, Rochester NY, USA

When subjects have to make decisions based on a temporal sequence of weak pieces
of evidence, they often show a bias towards overweighting early evidence compared to
late evidence [1]. In perceptual decision-making experiments, such a ’confirmation bias’
(CB) is observed in some studies [2,3] but not all [4,5]. Since these studies differed in
species (monkey, human) and modality (vision, auditory) the cause of this difference is
unclear. Here, we present an intuitive computational framework that can account for the
differences reported in the literature, and that makes psychophysical predictions which
are confirmed by preliminary data. Our framework extends the traditional ideal observer
model by explicitly accounting for an intermediate sensory representation stage between
external stimulus and behavior. This allows us to partition the information in the stimulus
about the decision into the information between stimulus and sensory representation,
and between sensory representation and decision. We show that existing studies which
find a CB have low sensory information and high decision-related information, with
the opposite for those studies that do not find a CB. While exact inference in such a
hierarchical system shows no biases, approximate inference algorithms may. We show
that performing probabilistic inference using a neural sampling based approximation
[6,7] leads to the same pattern of bias as in the data. Finally, we present supporting
psychophysical data from a human experiment in which we compare biases for threshold
stimuli that only differ in how information is partitioned with respect to the sensory
representation.
Figure caption: (a) Example stimuli for coarse orientation task: A: low sensory informa-
tion but high prior information, B: high sensory information but low prior information.
(b) Decomposition of stimulus information. Black line indicates stimuli with identical
information (at threshold) trading off sensory and prior information. (c-e) Formalization
of hierarchical inference model. (f-g) %correct for exact inference (f) and sampling-based
model (g). (h-i) Weighting of evidence over time in model (h) and our preliminary
psychophysical data.
[1] Nickerson Review of General Psychology 1998 [2] Kiani et al. The Journal of
Neuroscience 2008. [3] Nienborg & Cumming Nature 2009. [4] Wyart et al. Neuron
2012. [5] Brunton et al. Science 2013. [6] Fiser et al. TICS 2010. [7] Haefner et al.
Neuron 2016.
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[W 6] Reciprocity of social influence
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It has been shown that humans use advice from other humans in order to improve their
decisions. To this end they integrate their own and their partner’s evidence by taking
into account the reliability of their information. At the same time, social interactions
are subject to reciprocity, for example in the case of trust, people are more likely to
trust those who trust them. Yet, whether social influence and advice taking is reciprocal
remains an open question. To address this question, we designed an experiment in
which human subjects needed to solve a perceptual decision making task together with
a virtual partner. Both the human player as well as the virtual partner first made an
initial decision independently and then were allowed to revise their initial decision on
the basis of the initial decision of the other player. Finally, the revised decisions of both
players were revealed. Participants were made to believe that the virtual partner was
another human subject participating in the experiment. We manipulated the amount
of influence that the virtual partner took from the participants. Our result show that
humans were more strongly influenced by their partner, if they had reciprocally more
influence on the decisions of their partner. We then repeated the experiment telling
subjects that their partner is a computer. This time the reciprocity of influence on the
decision disappeared. These findings can be interpreted in the sense that humans use
reciprocity to communicate in social decision making.
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Brain disease, network dysfunction and intervention

[W 7] Pathological phase-amplitude coupling in the subthalamic nucleus
cannot be explained by non-sinusoidal oscillations
Jan Bölts1, Bernadette van Wijk2, Vladimir Litvak3, Andrea Kühn2
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Deep brain stimulation in the subthalamic nucleus (STN) is an established treatment
for patients with Parkinson’s disease (PD). A central finding in the analysis of local
field potential recordings from the implanted electrodes is an enhanced level of beta
band (13-30 Hz) synchronization. Furthermore, clinical symptoms of the disease have
been associated with a pathological phase-amplitude coupling (PAC) between beta and
high-frequency oscillations (HFO, 150-400 Hz). Recently, a similar pathological PAC
between beta and broadband gamma activity in motor cortex in PD was demonstrated
to be fully explained by the non-sinusoidal shape of the beta oscillation waveform1. In
contrast to the commonly assumed functional coupling between two separate oscillators,
this suggests that a single non-linear oscillator underlies the beta-gamma PAC. We
investigated whether this also applies to the pathological beta-HFO PAC in STN. To
this end, we examined local field potential recordings of 12 patients with deep brain
stimulation electrodes implanted in STN. Non-sinusoidalness of the beta oscillation
waveform was quantified using the sharpness, the steepness and the phase distribution
of the beta waveform. The three measures were compared with beta-HFO PAC values
of the same data2. In contrast to the beta-gamma PAC in motor cortex, we found no
significant correlations between non-sinusoidalness and PAC values. This indicates that
beta-HFO PAC in the STN likely arises from separate beta and HFO generators that
become pathologically synchronized in the context of Parkinson’s disease.
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[W 8] More mild epileptic bursts indicate reduced susceptibility to
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Epilepsy is a disease of hyper-synchronized and excessive brain activity. The most
common form of epilepsy is mesial temporal lobe epilepsy (MTLE), where a wide range
of epileptiform activity (EA) emerges from hippocampal structures. Here we investigate
EA in local field potentials of mice with MTLE. We developed a PYTHON-based
detection and classification toolbox for EA analysis, that enables us to distinguish
several types of EA-bursts and to quantify their dynamics: Severe EA -bursts were often
grouped in clusters. Most of these ictal phases were surrounded by transition states
which consisted of high densities of mild EA. The most severe events were typically
followed by a depression period, the duration of which increased with the severity of the
event. Inter-ictal phases with a higher rate of mild EA lasted longer and at session level
the rate of severe and mild EA was anti-correlated. Hence we showed that the presence
of mild EA-bursts indicates a reduced susceptibility to seizure-like events.
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[W 9] A Computational Model To Detect The Occurrence Of Epilepsy
Using EEG Signals
Sadeem Nabeel Saleem Kbah1
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Normally the cortical neurons communicate with each other in a synchronized and
systematic spikes, while in epilepsy the spikes will be electrical storm like which spreads
all over the cortex with random, excessively higher frequency and voltage. Epilepsy is
a very common mental disease which affect about 50 million patient worldwide. One
of the suggested treatments for epilepsy is the deep brain simulation (DBS). Where
we can give electrical pulses at certain amount and specific pattern [4] to the internal
layers of the brain cortex.However, although this method has a lot of advantages, it has
some limitations or disadvantages, other than the surgical operation related problems,
which can include: Some abnormalities might been noticed in the speech and ocular
functions of the patient. The patient might has some muscle twitching. The feeling of
paresthesias.Sometimes the simulation if the stimulation where near emotional related
nuclei like the orbital and medical parts of the prefrontal cortex in the brain, this can
cause the serious emotional problems, like the feeling of depression, impulsion of even
the thinking or desire of suicide. These disadvantages, which are also serious problems,
occurs to many reasons, among them are giving the wrong voltage, frequency and
pattern of spikes to the patient. In order to optimize the curing process of the patient
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we need to improve the DBS method by specifying the value of delivered spikes and
their patterns for each patient[6]. So we have first to detect the characteristics of each
epileptic EEG signal from several patients. Where the EEG is a medical method to record
and track the activity of the brain or part of it, through the electrical signals (spikes)
transferred between its parts and neurons. In this project we built a mathematical
model to simulate the epileptic seizures, based on Janson’s model. Janson’s model had
proved to be some of the best models to simulate epilepsy. We worked on executing this
model using both differential equations and MATLAB SIMULINK, we then justified the
obtained (simulated) signal with a real epileptic EEG signals, obtained from physio.net
of Yale University, using power spectrum technique. The second step included taking
live recorded EEG signals from epileptic patients, and work to change some parameters
in our model to make the simulated signals more specific. This can be done by training
the simulated signals against real physiological signals using NN.

This figure represents a block diagram for the aim of our project.
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[W 10] Credibility of modeling and simulation for clinical translation
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Multiscale modeling and simulation (M&S) continues to expand the boundaries of
biomedical research, and is poised to enter the clinical domain. Direct application
of M&S in healthcare is being driven by economic and political pressures, as well
as by changes in biomedical and computational sciences. M&S has potential to
transform personalized medicine − treatments directed to the specific patient, and
precision medicine − treatments directed to subsets of patients identified by genetic
or pathological commonalities. However, clinical application of M&S will require greater
credibility and reliability of models than has been needed for basic biological research.
Credibility encompasses model validation and verification (V&V). Validation asks
to what extent we have developed the right model for the biology that we are tasked
with reproducing. Validation is particularly challenging when applying models to human
biology and human disease, where model parameters rarely come from humans but
instead are gathered using data from tissue culture, in vivo animal experiments or
in vitro preparations. We then must seek human measureables that can be compared
to model output. Verification encompasses code verification, where we compare to
other instantiations of the model, and solution verification, where we ensure that we
developed an adequate numerical solution. Verification of both types can be addressed
by looking at model reproducibility, the ability to create an independent implementation.
Modeling of clinical diseases of the nervous system adds additional difficulties that are
not seen with modeling of the diseases of other organ systems. One difficulty arises
from the greater overlaps of scale embedding in the nervous system. For example, apical
dendrites of some neocortical pyramidal cells, which are subcellular in scale, can reach
across multiple layers of cortex, engaging the network-scale at different locations with
different effects. Additionally, the expression of brain function, and of brain disease,
occurs in part at the levels of cognition and behavior which can be difficult to quantify,
difficult to monitor and difficult to model. Despite all of these difficulties, computational
neuroscience can now begin to meet challenges of clinical credibility through a focus on
V&V, replicability, reliability and reproducibility, efforts that are becoming the norm in
other branches of computational systems biology.
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NEURON is the most widely used multiscale neuronal simulator, as measured by
number of publications and available models online. However, building biologically
realistic networks and running parallel simulations usually involves a steep learning curve.
Additionally, the lack of standardization makes it hard to understand, reproduce and reuse
existing models and simulation results. To facilitate these tasks, we developed NetPyNE,
a Python package that converts a set of high-level specifications in a standardized,
declarative JSON-like format into a parallelized NEURON model. NetPyNE clearly
separates model parameters from implementation code. It emphasizes the incorporation
of multiscale anatomical and physiological data, including complex spatial distribution
of cells, connectivity rules or stimulation patterns. Existing HOC or Python cell models
can also be directly imported into NetPyNE. Once the network model is specified, the
user can run parallel simulations with a single command which takes care of distributing
the workload and gathering data across computing nodes. NetPyNE also facilitates
parameter exploration via batch simulations, including pre-defined, configurable setups
to automatically submit jobs in multicore machines (Bulletin board) or supercomputers
(SLURM/Torque). NetPyNE is available XSEDE supercomputers and the Neuroscience
Gateway (NSG). Once the simulation is complete, NetPyNE provides a wide range of
visualization analysis functions, including connectivity matrices, 3D representation of
network cells, raster plots, spike histograms, power spectra, voltage (or other variables)
trace plots, and information measures such as Granger Causality or normalized transfer
entropy. To facilitate data sharing, the package saves and loads the specifications,
network, and simulation results using common file formats (Pickle, Matlab, JSON or
HDF5), and can convert to and from NeuroML, a standard data format for exchanging
models in computational neuroscience. The tool website (www.neurosimlab.org/netpyne)
includes comprehensive documentation, examples, tutorials, and a Q&A forum. A GUI
for the tool is currently under development. NetPyNE is being used in several labs
across the world to develop a wide range of multiscale network models including motor
cortex, visual cortex, prefrontal cortex, hippocampus, claustrum, or basal ganglia. It is
also used by OpenSourceBrain to convert NeuroML models to parallel NEURON and
simulate them on supercomputers.
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Overview of NetPyNE tool.
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[W 12] Visualization of Neuroscientific Data
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Neuroscience currently poses many of the most challenging scientific problems. Ambitious
initiatives, such as Brain (Jorgenson et al., 2015) or the Human Brain Project (Markram
et al., 2011), encourage the collaborative work of multidisciplinary laboratories from
different research centres and industry. Technological advances are successfully allowing
to obtain experimental data at always higher speed; at the same time, in silico experiments
are also generating a huge amount of synthetic data. Therefore, there is a need for
new techniques and tools that can help in the exploration and analysis of the generated
data, which is already becoming the new bottleneck within the work pipeline due to
the overwhelming size of the data to be processed. This poster presents a set of
innovative tools for the visualization of neuroscientific data that work in a collaborative
fashion (Pastor et al., 2015, Galindo et al., 2016, Garcia-Cantero et al., 2017), creating
an ecosystem that provides useful and powerful techniques for the interactive visual
exploration and analysis of neuroscientific data.
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Restricted Boltzmann Machines (RBMs) are energy-based neural network models that
perform approximate maximum-likelihood learning of probability distributions, with the
learned parameters (or ’weights’) of the network taking the form of a generative model
for the observed data [1]. With an appropriately chosen network architecture, the hidden
units of RBMs easily learn to represent higher-order correlations in the data that are
useful as features for downstream applications, such as fine-tuning discriminative models
or dimensionality reduction [2, 3]. Inspired by this generative capacity of RBMs, we
sought to embed high-dimensional, multineuronal activity patterns recorded by calcium
imaging of cortical neurons (from both awake, behaving rodents as well as primary
cortical cell culture) into deep autoencoder networks whose weights are initialized with
individually-trained RBMs [3]. The resulting low-dimensional codes learned by these
deep models capture geometry of the multineuronal ’pattern space’ not expressible with
linear methods such as Principal Components Analysis (PCA) or Nonnegative Matrix
Factorization (NMF). One can also create visualizations of multineuronal activity by
either further embedding the weights of the network with other dimensionality reduction
algorithms (t-SNE, Isomap, etc.) or by explicitly compressing the bottleneck layer of
the network to only 2 or 3 hidden units. We then explore the use of these learned low-
dimensional codes and visualizations to elucidate geometric and distributional properties
of population patterns with the aim of identifying putative neuronal ’ensembles’ (groups
of neurons that activate synchronously) [4]. Finally, we relate the geometry and dynamics
of the imaged network’s ensembles to ongoing behavior and learning, in the case of in
vivo recordings, or other biological variables, such as developmental time course of a
cell culture (in the in vitro case).
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[W 14] The “convis” toolbox: Population Simulation of the Visual
System with Automatic Differentiation using Theano
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We developed “convis” [1], a Python toolbox for simulation and efficient fitting of
LN-cascade models with large, non-separable spatio-temporal filters and non-linearities
of varying complexity. The models are implemented as abstract computational graphs
in theano [2] and allow for flexible inspection, optimization and manipulation while
computation intensive tasks are executed on a GPU.
Convis is implementing models as a Theano abstract graph of lazy operations, instead of
immediate machine instructions, to be able to combine, manipulate and optimize them.
By combining layers, complex models can be formulated rapidly. Sub-graphs of any
model can be replaced, eg. to exchange a convolution kernel with a reduced parameter
version, such as a spline kernel. Also gradients of the output with respect to any of the
inputs can be derived by back-propagation and computed as an additional output of
the model (automatic differentiation). Optimization modules remove redundancy and
simplify the model and decide which operation will be compiled to the CPU and GPU,
such that the resulting machine code will run efficiently and numerically stable [2].
Through automatic differentiation and inspectability at run-time, Convis can facilitate
parameter exploration, either interactively or by following an optimization method when
fitting to data. Computing the first derivative of a parameter is not costly and the
penalty of computing second or third derivatives can be justifiable if they speed up the
fitting process. In many cases, even very large linear filters can be fitted efficiently to
experimental data.
Convis offers a range of pre-build models, such as LN-cascade models with feedback and
delays as well as a reimplementation of the “VirtualRetina” model [3] including contrast
gain control and a spiking mechanism. The models in the toolbox are extensible with
additional computational layers, parameterized 3d filter kernels, error functions and
optimization routines.
The package is available via Pypi and github [1].
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Two-photon imaging allows light-evoked retinal activity to be measured with a relatively
high spatiotemporal precision, and has been used to characterize functional diversity in
the mouse retina. It is, nonetheless, constrained: signals are contaminated by optical
distortion, photon-shot noise and nonlinear indicator kinetics, and recording sessions are
time-limited to avoid bleaching and photo-toxicity, preventing an exhaustive exploration
of the stimulus space. The key to advanced downstream analysis or to making predictions
to unobserved stimuli is modeling the uncertainty about the signal correctly.
We propose to recover the fluorescence signal using a Bayesian non-parametric method
called Gaussian Process (GP) regression, providing a probabilistic estimate of the
underlying signal including a model of the uncertainty. Our GP models are fit to calcium
and glutamate imaging data in retinal tissue driven by oscillatory stimuli, using a Poisson
likelihood function to model photon-shot noise explicitly. We use sparse approximation
methods and variational inference to overcome challenges with fitting the GP model
parameters to a large number of observations.
The GP models can then be used as the foundation for further statistical analysis: For
detecting periods of response differences, one can use GP equality tests which extend
inferential statistics from points to functions; effects of stimulus parameters can be
tested for in a non-linear ANOVA-like framework; for clustering, the Bhattacharyya
distance can be used to describe the similarity of two responses, taking the uncertainty
into account. Additional processing steps can be included, accounting for the point
spread function of the optical system or the kinetics of the fluorescent indicator.
We wish to use this framework to explore response diversity in the IPL of the mouse
retina. In particular, to identify the conditions under which co-stratifying bipolar cell
terminals, both on the same and different cells, decorrelate to form distinct functional
pathways. Our imaging configuration includes an electrically-tunable lens which allows
fast vertical scanning, allowing us to image across multiple layers in the IPL almost
simultaneously. The use of parametric stimuli (such as harmonic stimuli with frequency
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and contrast parameters) allows us to optimize our stimuli to maximize decorrelation
between neurites.
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[W 16] Combining single cell RNA-seq datasets to explore and visualize
brain cell variability
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Single cell RNA sequencing is a recently developed technology for obtaining transcrip-
tomes of individual cells from a sample of tissue. It allows to study transcriptomic
variability among cells and has become a major tool in cell type discovery, supplement-
ing morphological measurements and electrophysiological recordings. In the last few
years, several scRNA-seq datasets of cells sampled from various regions of mouse brains
were published, with the number of cells typically ranging from 100s to 1000s in each
dataset. Different studies have used different methodologies of single cells isolation,
cDNA amplification, and library preparation, making it difficult to combine datasets or
to verify to what extent they agree with each other due to the induced “batch effects”
between datasets.
Here, we develop computational approaches for combining multiple datasets by removing
such “batch effects”, such that the combined data can be used for further dimensionality
reduction and/or cell type identification. We found that feature selection can dramatically
improve the matching. In particular, we found that selecting only a small number of
genes with high expression in a subset of cells and near-zero expression in the remaining
cells was a promising strategy, allowing us to obtain a good match of Zeisel et al. 2015,
Tasic et al. 2016, and Cadwell et al. 2016 datasets.
However, matching after “batch correction” remains imperfect, and we found that
conventional dimensionality reduction methods such as t-SNE can potentially amplify
the remaining dissimilarities as they are only aiming at preserving very local information.
We are therefore working on adapting t-SNE such that the global arrangement of the
resulting clusters is interpretable as well. Our preliminary results show that this can be
achieved by using multidimensional scaling to position t-SNE clusters.
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Originally invented to describe magnetism, the Ising model has proven to be useful
in many other applications, as, for example, inference problems in computer science,
socioeconomic physics, the analysis of neural data [1,2,3] and modeling of neural
networks (binary neurons). Despite its simplicity, there exists no general solution to the
Ising model, i.e. the partition function is unknown in the case of an interacting system.
Mean field theory is often used as an approximation being exact in the noninteracting
case and for infinite dimensions. A correction term to the mean field approximation
of Gibb’s free energy (the effective action) of the Ising model was given by Thouless,
Anderson and Palmer (TAP) [4] as a “fait accompli” and was later derived by different
methods in [5,6,7], where also higher order terms were computed.
We present a diagrammatic derivation (Feynman diagrams) of these correction terms
and embed the problem in the language of field theory. Furthermore, we show how
the iterative construction of the effective action used in the Ising case generalizes to
arbitrary non-Gaussian theories.
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The number of neurons that can be simultaneously recorded doubles every 7 years [1].
This ever increasing number of recorded neurons opens the possibility to address new
questions and extract higher dimensional signals from the recordings. It is however
unclear how to extract dynamical analog signals from point emission observations when
the dimensionality is high. Indeed, traditional particle filter (PF) methods that rely on
importance weights can solve this task numerically, but are known to suffer from the
curse of dimensionality (COD), i.e. an exponential growth of number of particles with
problem dimensionality. Here, we propose the spiking Neural Particle Filter (sNPF), a
weight-free PF that extents earlier work [2] to account for point-emission processes and
that holds the promise of avoiding the COD.
The decoding problem is formalized as a filtering problem, in which the hidden stimuli
xt ∈ Rn follow an Ito stochastic differential equation (SDE) with nonlinear drift
function f(xt), giving rise to m spike trains st = dNt/dt with instantaneous firing rates
g(xt, t) ∈ Rm. The rate function is kept general, and may reflect biophysical properties
such as weighted input summation, or spiking-history dependence via a time-dependent
postsynaptic potential. Stochastic filtering is the task of finding the posterior probability
density of the hidden stimuli conditioned on the whole spiking history. The solution to
this filtering problem is analytically intractable [3].

The sNPF approximately solves this task by propagating equally-weighted particles x(k)
t ,

representing empirical samples of the posterior, according to the SDE:

dx
(k)
t = f(x

(k)
t ) dt+Wt

(
dNt − g(x

(k)
t ) dt

)
+ Σ1/2

x dv
(k)
t .

This dynamics is closely related to the dynamics of the first posterior moment [3,4].
The gain Wt determines the emphasis that is laid on the output of the neurons for
decoding. We computed Wt as in [4]. We demonstrate that the sNPF can successfully
track a hidden stimulus based on spike trains of neurons and that it holds the promise of
avoiding the COD (Figure). The favorable scaling with dimensions opens the possibility
to accurately estimate high-dimensional signals from a large number of simultaneously
recorded spiking neurons.

Left: The filter estimate (orange) tracks a hidden stimulus (black) with nonlinear
dynamics, based on a spike train (top left). Shading reflects particle density. Right:
Number of particles N for fixed performance scales linearly with dimensionality for the
sNPF, and exponentially for a weighted PF.
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[W 19] Measuring the distance of neural morphologies using graph
features
Sophie C. Laturnus1, Debarghya Ghoshdastidar2, Ulrike von Luxburg2, Philipp Berens1

1. AG Berens, Institute of Ophthalmic Research, University of Tübingen, Otfried-Mueller-Str. 25, 72076
Tübingen, Germany

2. Department of Computer Science, University of Tübingen, Sand 14, 72076 Tübingen, Germany

The morphology of neurons is typically considered a defining feature of neural cell
types. For example, 14 types of bipolar cells can be discriminated in the mouse retina
based on their morphology (Helmstaedter et al. 2013, Kim et al. 2014, Greene et al.
2016), leading to a classification in good agreement with genetic and physiological
data (Shekhar et al. 2016, Franke et al. 2017). Similarly, many retinal ganglion cells
can be discriminated on morphological terms (Sumbul et al., 2014). Given recent
advances in automatic reconstruction and crowd-based tracing techniques, the amount
of available data is rapidly increasing (see e.g. www.neuromorpho.org). However,
machine learning methods to automatically discriminate or cluster neurons rely on fairly
simple representations of neural morphologies, discarding much of the richness of the
three-dimensional morphology. Typically, these methods consider the neurite density
in three dimensions or low dimensional projections thereof and measure the similarity
between two neurons by the euclidean distance of these densities. For retinal neurons,
this procedure has been used by analyzing the axon density of bipolar cells or the
dendrite density of ganglion cells as a function of IPL depth. However, all fine details
contained in the morphological reconstructions such as branching patterns are discarded.
Here we propose to measure neuron similarity by retaining the original representation
as a tree in the graph theoretical sense and comparing structural differences based on
graph statistics. We investigate which similarity measures based on graph features allow
reliable discrimination of neural types in the retina and how they can be combined with
existing methods to improve discrimination and clustering of neural types.
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[W 20] How to infer distributions in the brain from subsampled
observations.
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Inferring the dynamics of a system from observations is a challenge, even if one can
observe all system units or components. The same task becomes even more challenging
if one can sample only a small fraction of the units at a time. As the prominent
example, spiking activity in the brain can be accessed only for a very small fraction
of all neurons in parallel. These limitations do not affect our ability to infer single
neuron properties, but it influences our understanding of the global network dynamics
or connectivity. Subsampling can hamper inferring whether a system shows scale-free
topology or scale-free dynamics (criticality) [1,2]. Criticality is a dynamical state that
maximizes information processing capacity in models, and therefore is a favorable
candidate state for brain function. Experimental approaches to test for criticality extract
spatio-temporal clusters of spiking activity, called avalanches, and test whether they
followed power laws. These avalanches can propagate over the entire system, thus
observations are strongly affected by subsampling. Therefore, we developed a formal
ansatz to infer avalanche distributions in the full system from subsampling using both
analytical approximation and numerical results.
In the mathematical model subsampling from exponential (or, more generally, negative
binomial distribution) does not change the class of distribution, but only its parameters.
In contrast, power law distributions, do not manifest as power laws under subsampling
[3]. We study changes in distributions to derive “subsampling scaling” that allows to
extrapolate the results from subsampling to a full system: P (s) = psubPsub(s/psub),
where P (s) is an original distribution, Psub – distribution in the subsampled system,
psub probability to observe any particular event. In the model of critical avalanches
subsampling scaling collapses distributions for all number of sampled units (Figure 1. B).
However, for subcritical settings no distribution collapse is observed (Figure 1. D). With
the help of this novel discovery we studied dissociated cortical cultures. We artificially
subsampled recordings by considering only fraction of all electrodes. We observed that
in the first days subsampling scaling does not collapse distributions well, whereas mature
( from day 21) allow for a good collapse, indicating development toward criticality
(Figure 1. C, E) [4].
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Subsampling scaling in model and experiment. Left: model; right: experiments on
developing cultures. A: Avalanche size counts f(s), full and subsampled critical models;
N - number of sampled neurons. B-C: Subsampling scaling, all f(s) collapse. D, E: No
collapse for subcriticality

Acknowledgements
AL received funding from the Marie Curie Actions (FP7/2007-2013) under REA grant agreement
no. [291734]. VP received funding from BMBF Bernstein 01GQ1005B.

References
1 Beggs JM, Plenz D: Neuronal avalanches in neocortical circuits. J Neurosci, 2003, 23(35): 11167-

11177.
2 Priesemann V, Munk MH, Wibral M: Subsampling effects in neuronal avalanche distributions recorded

in vivo. BMC neuroscience, 2009, 10(1):40. 10.1186/1471-2202-10-40
3 Stumpf, MPH, Wiuf C, May RM: Subnets of scale-free networks are not scale-free: sampling properties

of networks. PNAS, 2005, 102(12): 4221-4224. 10.1073/pnas.0501179102
4 Levina A, Priesemann V: Subsampling scaling. Nat. Comm, 2017, 8. doi:10.1038/ncomms15140

©(2017) Levina A, Priesemann V
Cite as: Levina A, Priesemann V (2017) How to infer distributions in the brain from subsampled
observations. . Bernstein Conference 2017 Abstract. doi: 10.12751/nncn.bc2017.0040

53

http://dx.doi.org/10.1186/1471-2202-10-40
http://dx.doi.org/10.1073/pnas.0501179102
http://dx.doi.org/doi:10.1038/ncomms15140
https://doi.org/10.12751/nncn.bc2017.0040


Posters Wednesday

[W 21] Introducing Computer Vision methods to model retina response
in Retina Prosthesis applications
Nikos Melanitis-Paraskevas1, Konstantina Nikita1

1. Biomedical Simulations and Imaging Lab, School of Electrical and Computer Engineering, National
Technical University of Athens

Retina Prosthesis (RP) is an approach to restore vision, using an implanted device to
electrically stimulate the retina. A fundamental problem in RP is to translate the visual
scene to retina neural spike patterns, mimicking the computations normally done by
retina neural circuits. Starting with an observed scene, in the form of an image, an
accordingly devised model is employed, to produce a spatial and temporal pattern of
neural activation, or simply put spikes in each implanted electrode.
In the present work, we start from two observations. Firstly, that using raw intensity
values has often been insufficient in artificial vision problems, yielding poor results.
Currently, implants process the images in such an intensity-based manner, translating
the scene raw intensity to stimulation intensity in a proportional fashion.
Secondly, we note the recent congruence of evidence on Retina Ganglion Cell (RGC)
functions. We propose to use Computer Vision (CV) methods, to introduce novel visual
scene representations, which correspond to RGC functions. Based on recent literature
[1, 2, 3, 5, 6] on functional RGC types, DoG filters, edge detection algorithms, optical
flow algorithms and statistical measures of spatio-temporal uniformity as entropy and
variance are the proper CV methods to model RGC functions. We introduce a novel
visual input representation with CV features, using the aforementioned CV methods.
We use CV features as stimulus in a GIF neuron model [4] to reproduce the retina
spiking output. A retina simulator [7] provides the stimulus-retina response data to train
and test our model. Initial results show that our models achieve significant train set
convergence. We evaluate spike train similarity using two measures, Interspike-Interval
distance and SPIKE distance. We reject models that sustain a constant firing rate,
regardless of the stimulus presented. As the retina simulator used produces different
spike trains at each presentation of a specific stimulus, we quantify the simulator’s
intrinsic variability.
In conclusion, we propose a CV image preprocessing method to model RGC functions and
then use the method to reproduce retina output with a standard GIF neuron model. In
the future, we aim to further evaluate the preprocessing methods and models presented
in this work and pursue to train and test these methods and models on biological retina
data.
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Learning, plasticity and memory

[W 22] Storage of memory sequences in the hippocampal circuit
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Despite extensive research, the role of the hippocampus in episodic memory storage
and recall is still unclear. We have recently proposed that episodic memories are
best represented by temporal sequences of neural activation patterns and that the
hippocampal circuit is optimized to store these sequences. Here, we study the possible
mechanisms by which memory sequences can be stored and recalled from the cortico-
hippocampal circuit, consisting of the EC-CA3-CA1-EC loop. Storing sequence presents
entirely different challenges from storing static patterns. During memory encoding, CA3
sequences are hetero-associated with EC sequences, which are driven by sensory inputs.
CA3 sequences are generated either intrinsically or via blending the EC inputs and CA3
recurrent inputs. During memory retrieval, CA3 sequences have to be reactivated based
on partial, noisy cues, which are provided to EC. The retrieved sequences in CA3 then
reactivate the stored patterns in EC via the CA1 layer. We find that memory performance
depends on the network’s ability to perform pattern completion of individual patterns
and robust retrieval of sequences from CA3. These two functions have competing
requirements. Modeling CA3 as a fixed randomly connected network facilitates decoding,
but sequence retrieval in CA3 fails if any noise is present. On the other hand, using
a fixed locally connected network, the stored sequences are retrieved robustly, but
the correlations between successive patterns impair pattern completion when decoding
the CA3 patterns. Combining the advantages of both models, networks trained on
sequences of uncorrelated patterns achieve a good overall memory performance because
sequences in CA3 are encoded robustly and do not impair decoding in the feedforward
connections to CA1 and EC. In conclusion, the cortico-hippocampal circuit can robustly
store and retrieve sequences of patterns, but memory performance critically depends on
the network architecture in CA3.
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Sleep is essential for the formation and consolidation of long-term memories in neural
circuits. Besides the mechanisms of synaptic and systems consolidation [1], several
experimental studies indicate that during sleep several synapses are strengthened while
others are weakened resulting to an enhancement of memory traces [2,3]. However, the
underlying processes of this enhancement are mainly unknown. Based on our previous
work [4], in this study we show that sleep-induced sharp-wave ripples triggers synaptic
plasticity and that, in combination with synaptic scaling, synaptic connections are
selectively scaled up or down depending on their relevance for long-term storage. In our
theoretical model, we use a spiking neural network with calcium-dependent synaptic
plasticity [5], which yields LTP and LTD, and activity-dependent homeostatic synaptic
scaling [6]. During wake, external stimuli cause synaptic changes forming a feed-forward
structure representing a memory trace. Afterwards, during sleep, slow-wave oscillations
trigger mainly synaptic scaling inducing downscaling. Furthermore, noise-induced sharp-
wave ripples are generated depending on the nonlinear amplification of synchronous
inputs in the dendritic trees [7]. These ripples propagate through subparts of the
network inducing mainly LTP. Our analyses show that the probability of ripple generation
increases significantly if the sub-network contains a memory trace. Furthermore, the
strength of the memory trace influences the ripple generation such that synapses being
part of strong memories are more strengthened than synapses being in weak memories.
Thus, on average, strongly encoded memory traces are enhanced or consolidated, while
weaker memories and memory-unrelated synapses are attenuated. In summary, our
theoretical model shows how different sleep-dependent activities trigger distinct synaptic
mechanisms such that the memory traces encoded in a neural network are actively
sorted into memories, which have to be consolidated, and memories, which have to be
forgotten.
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A fundamental task of the brain is learning causal effects between sensory stimuli, by
detecting their systematic temporal order. It has been shown that sequential activation
of neurons reflects the learned temporal order of experienced stimuli (ref. 1). However,
it is not clear how neurons respond to stimuli that have no systematic temporal order, in
which forward and backward input sequences balance, and the input is effectively non-
sequential. We hypothesize that, after waiting a sufficiently long time, the brain should
learn the input statistics and display non-sequential neural activity. Using multi-electrode
neural recordings in the primary visual cortex of awake ferrets, here we show that cortical
responses actively adapt to produce non-sequential outputs. When subjects are shown
a natural movie, to which they are adapted, neural activity is nearly non-sequential;
When they are shown unfamiliar artificial noise, neural activity is sequential at first,
but then it converges to a nearly non-sequential state within a few minutes (Fig.1a,b).
Furthermore, this difference between responses to natural and artificial stimuli was not
present at eye opening but developed over several days (Fig.1c). In order to understand
the neural mechanisms underlying this adaptation, we studied a computational model of
neural circuits dynamics undergoing spike timing-dependent plasticity. We proved that
the most celebrated principles of synaptic organization, those of Hebb (ref 2,3) and Dale
(ref 4,5), are necessary and sufficient for the maintenance of non-sequential activity
(Fig.1d). We show that when these principles are violated, even non-sequential inputs
can produce sequential outputs. These results reveal a new functional role of ubiquitous
properties of neural circuits in ensuring the preservation of temporal sequentiality of
cortical responses and thereby providing a dynamical substrate for the reliable learning
of temporal information.
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A) Anti-symmetric part of cross correlation is lower after learning in one subject.
B) Asymmetry decreases in nearly all 16 subjects. C) Asymmetry is larger for noise
vs movie, but no difference at eye opening (day=30). D) Model synaptic matrix
converges to a Hebb and Dale structure via STDP.
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[W 25] Beyond spike-timing-dependent plasticity: a computational study
of plasticity gradients across basal dendrites
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Synaptic plasticity is thought to be the principal mechanism underlying learning in the
brain. Models of plastic networks typically combine point neurons with spike-timing-
dependent plas- ticity (STDP) as the learning rule. However, a point neuron does
not capture the complexity of dendrites, which allow non-linear local processing of the
synaptic inputs. Furthermore, experimental evidence suggests that STDP is not the
only learning rule available to neurons. Implementing biophysically realistic neuron
models, we studied how dendrites allow for multi- ple synaptic plasticity mechanisms
to coexist in a single cell. In these models, we compared the conditions for STDP
and for the synaptic strengthening by local dendritic spikes. We further explored how
the connectivity between two cells is affected by these plasticity rules and the synaptic
distributions. Finally, we show how memory retention in associative learning can be
prolonged in networks of neurons with dendrites.
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Grid cells are neurons of the medial entorhinal cortex that are tuned to the animal’s
position in the environment and whose firing fields form a hexagonal grid pattern in
space [1]. Since their discovery, grid cells have been studied extensively, for the striking
regularity of their patterns, and because they are believed to support high-level cognitive
tasks such as self-location, memory, and navigation [2,3]. Nevertheless, to date, it
remains unclear how grid-cell activity is formed and how grid cells interact within the
cortical network.
Interestingly, grid cells are organized in discrete functional modules that are characterized
by similar spatial scales and orientations [4]. Because cells of the same module tend to
respond in concert to external manipulations of the environment [4,5] and their spiking
activity is temporally correlated [6], grid cells are thought to be recurrently connected [7].
Yet the functional role of such recurrent connections is still debated. On the one hand,
attractor models use structured recurrent connectivity to generate grid fields [8], but it
is unclear how such a connectivity could emerge without an anchor to the physical space.
On the other hand, feed-forward models can generate grids from spatially-selective
inputs [9,10], but they largely neglect the recurrent dynamics within modules.
Here we propose that broadly-tuned grid patterns could first be learned via spatially-
irregular feed-forward inputs and then sharpened or amplified by the recurrent connections.
To evaluate this hypothesis, we propose a minimal mathematical model of the neural
activity within a grid-cell module. Using both analytical and numerical methods, we study
the conditions in which grid patterns could be recurrently amplified, and we quantify the
amount of amplification that is obtained as a function of the connection strengths and
the quality of the input tuning. Finally, we show how a connectivity structure suitable for
amplification could spontaneously emerge from the activity correlations already present
at the feed-forward input.
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Since the early days of Solid State Electronics, there have been considerable attempts to
emulate the functioning of mammalian brains by analogue and digital circuits. Recent
developments in the research area of solid-state device physics open new perspectives
which allow the design of neural circuits that come closer to their biological counterpart.
This so-called memristive devices are characterized by a resistance, which depends on the
previous applied electrical potentials. Based-on the challenging behaviour of memristive
devices, this contribution aims to investigate the possibilities of memristive systems
to emulate cognitive functionalities and computations which occur in the cortex and
hippocampus of the human brain. Learning and memory processes within hippocampal
circuits are regulated by synaptic plasticity mechanisms that rely on variable activity
dependent changes in the connection between individual neurons such as spike-timing-
dependent plasticity (STDP). The volatility and history dependence of memristive
systems are here used to incorporate a voltage-based plasticity rule suitable to account
for a variety of experimental data on STDP. The here presented model also enables
the formation of bidirectional connections and the formation of local receptive fields
in auto-associative networks. The obtained network performance is discussed in the
framework of synaptic plasticity and network architecture in the hippocampus underlying
distinct cognitive functions.
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[W 28] Bistable activation of CA3 interneurons regulates the generation
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Hippocampal sharp wave-ripples (SWR) are spontaneous, oscillatory extracellular events,
which reflect the synchronous activation of large neuronal ensembles. They are thought
to mediate the consolidation of explicit memories and are known to originate in the CA3
region. However, the mechanisms underlying their occurrence remain to date unclear.
Experiments both in vivo and in vitro have shown that pyramidal cells and different
types of interneurons are involved in the generation of SWR, and that these cells
preferentially fire in different parts of the cycle. Pyramidal cells (PYR) have low activity
during SWR, and only a small fraction of them fires once during an event. Fast-spiking,
parvalbumin-positive basket cells (PV+BC) are mainly active during SWR but almost
silent outside them, whereas other subgroups of GABAergic interneurons are known to
reduce their spiking activity during a SWR event (see e.g. [1]). Recent experimental
evidence suggests that a subpopulation of SOM+ cells belongs to the latter group.
Interestingly, the activation of PV+BC triggers a SWR event [2], and the stimulation of
a single pyramidal cell activates the interneuronal network which drives the generation
of a SWR [3].
To explain the controversial contribution of inhibition to the generation of SWR, we
study how a network comprising an excitatory population (PYR) and two types of
inhibitory cells (PV+BC, and a group of tonically firing interneurons, SOM+) can
rapidly generate the strong build-up of activity required to initiate a SWR event. In
a rate-based model, we derive bistability conditions that enable the system to switch
from an ‘outside-SWR’ state, in which the network is dominated by the active SOM+

cells (PV+BC and PYR are mostly inactive), to an ‘inside-SWR’ state, in which the
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activation of PV+BC triggers the disinhibition of PYR via suppression of SOM+ cells.
We hypothesize that a synaptic depression mechanism in the connections from PV+BC
to SOM+ cells influences the termination of the ‘inside-SWR’ state and the occurrence
of successive SWR. Furthermore, we compare the behavior of the rate-based model with
simulations of a network of leaky integrate-and-fire neurons. The ’outside-SWR’ and
’inside-SWR’ states are here characterized by a balanced regime of PYR and the active
interneuronal populations (SOM+ cells and PV+BC, respectively).
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[W 29] Associative properties of a structural plasticity rule based on
firing rate homeostasis
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The interaction between Hebbian and homeostatic plasticity in neuronal networks has
recently received a lot of attention. Hebbian synaptic plasticity like STDP, known
for its associative properties, leads to instabilities in recurrent networks, and different
homeostatic mechanisms have been proposed to stabilize the learning process. While
slow homeostatic plasticity has been observed in experiments, a mechanism fast enough
to compensate instabilities on short time scales remains to be found [1]. The goal of
this work is to contribute another aspect to the understanding of this interaction: could
associative properties also emerge from a rule based on homeostatic principles [2]? We
consider the maturation of networks in the primary visual cortex (V1) of mice as an
example. In contrast to the situation right after eye-opening, neurons in adult V1 are
more likely to connect to other neurons that have similar preferred orientations (PO) [3].
We simulate this maturation process in a recurrent network of leaky integrate-and-fire
neurons, in which excitatory to excitatory connections are subject to a structural plasticity
rule based on the homeostasis of firing rates [4,5]. We found that upon stimulation
that emulates early visual experience [6], the connection probability is indeed modulated
according to the PO of neurons. Moreover, we could show that this effect is long-lasting
and the emerging structure decays only slowly when the specific external stimulation
is turned off. Our results demonstrate very clearly that associative properties can also
emerge from a plasticity rule that is only based on firing rate homeostasis in single
neurons, and that is not explicitly dependent on correlations between the activity of
neurons.

62

http://dx.doi.org/ 10.1126/science.1149381
http://dx.doi.org/ 10.1523/JNEUROSCI.0867-14.2014
http://dx.doi.org/ 10.1523/JNEUROSCI.0867-14.2014
http://dx.doi.org/10.1113/JP271644
https://doi.org/10.12751/nncn.bc2017.0048


Acknowledgements
Supported by Erasmus Mundus / EuroSPIN, BMBF (grant BFNT 01GQ0830) and DFG (grant EXC
1086). The HPC facilities are funded by the state of Baden-Württemberg through bwHPC and DFG
grant INST 39/963-1 FUGG.

References
1 Zenke F, Gerstner W, Ganguli S. The temporal paradox of Hebbian learning and homoestatic plasticity.

Current Opinion in Neurobiology 43: 166-176, 2017
2 Gallinaro JV, Rotter S. Associative properties of structural plasticity based on firing rate homeostasis

in a balanced recurrent network of spiking neurons. arXiv preprint arXiv: 1706.02912, 2017
3 Ko H, Cossell L, Baragli C, Antolik J, Clopath C, Hofer SB, Mrsic-Flogel TD. The emergence of

functional microcircuits in visual cortex. Nature 496: 96-100, 2013
4 Butz M, van Ooyen A. A simple rule for dendritic spine and axonal bouton formation can account for

cortical reorganization after focal retinal lesions. PLOS Computational Biology 9: e1003259, 2013
5 Diaz-Pier S, Naveau M, Butz-Ostendorf M, Morrison A. Automatic generation of connectivity for

large-scale neuronal network models through structural plasticity. Frontiers in Neuroanatomy 10,
2016

6 Sadeh S, Clopath C, Rotter S. Emergence of functional specificity in balanced networks with synaptic
plasticity. PlOS Computational Biology 11: e1004307, 2015

©(2017) Gallinaro JV, Rotter S
Cite as: Gallinaro JV, Rotter S (2017) Associative properties of a structural plasticity rule based on
firing rate homeostasis. Bernstein Conference 2017 Abstract. doi: 10.12751/nncn.bc2017.0049

[W 30] Prediction and control of non-linear dynamics by local stable
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The brain needs to construct forward or inverse models of the non-linear dynamics of
muscles, limbs and the external world for motor control and planning. How spiking
neural networks can learn such models is an open problem, despite significant progress
via reservoir computing, FORCE learning, and other methods [Abbott et al., 2016,
DeWolf et al., 2016, Denève et al., 2017].
We propose Feedback-based Online Local Learning Of Weights (FOLLOW) [Gilra and
Gerstner, 2017] which especially draws from function and dynamics approximation
theory [Funahashi, 1989, Eliasmith and Anderson, 2004] and adaptive control theory
[Ioannou and Sun, 2012]. Using our FOLLOW scheme, a recurrently-connected network
of heterogeneous spiking neurons learns its feedforward and recurrent weights, so as to
predict or control a low-dimensional non-linear dynamical system d~x/dt = ~f(~x, ~u), where
~u(t) is the control input and ~x(t) are the state variables. We derive the learning rules
showing global uniform (Lyapunov) stability with the error tending to zero asymptotically,
under reasonable assumptions and approximations. The learning rules are synaptically
local involving the pre-synaptic firing rate and an error feedback current injected into
the post-synaptic neuron.
Using a two-link arm as an example, we show that our network learns a forward predictive
model for motor planning i.e. it predicts the joint angles and velocities ~x(t) given joint
torques ~u(t), or learns an inverse model for motor control i.e. it infers the torque ~u(t)
that would generate a desired state trajectory ~x(t). We further use the inverse model
to control the arm to draw on a wall.
With FOLLOW learning, we propose a more biologically plausible, specifically synaptically
local, scheme of how the brain may learn forward and inverse models to perform motor
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planning and control. Extensions like incorporating Dale’s law for further biological
plausibility, hierarchical coding and control, semi-supervised learning, and applications
to neuromorphic computing and neurorobotics are planned for future work.
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[W 31] Predictive Place-cell Sequences for Goal-finding Emerge from
Goal Memory and the Cognitive Map: A Computational Model
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Hippocampal place-cell sequences observed during awake immobility often represent
previous experience, suggesting a role in memory processes [1]. However, recent reports
of goals being overrepresented in sequential activity suggest a role in short-term planning
[2], although a detailed understanding of the origins of hippocampal sequential activity
and of its functional role is still lacking. In particular, it is unknown which mechanism
could support efficient planning by generating place-cell sequences biased towards known
goal locations, in an adaptive and constructive fashion. The hypothesis that certain
forms of sequential activity can guide behavior implies specific properties of the sequence-
generating mechanism. First, for efficient behavioral guidance, sequence trajectories
should be task-dependent, depicting currently relevant trajectories preferentially. Second,
trajectories should include novel combinations of start and end points when necessary.
These conditions are not easily met by most existing computational models of sequential
hippocampal activity. To fill this gap, we present a model of place-cell sequences,
implemented in a large-scale spiking network with physiologically interpretable parameters,
in which goal learning by reward-based plasticity shapes the sequence generation process,
and in which sequential activity guides spatial behavior [3]. In our model, following reward-
based potentiation of cortico-hippocampal synapses, prefrontal contextual representations
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bias hippocampal recall activity, which progresses sequentially across the cognitive map-
like network structure towards a context-specific goal location. Importantly, sequence
trajectories neither replicate previous experiences nor follow virtual directional signals,
but rather emerge as an effect of intrinsic network dynamics biased by goal-specific
inputs. The resulting place-cell sequences are used to guide the behavior of a virtual
rat in a memory-guided decision-making task. Furthermore, the implementation as
a large spiking network showing ripple-band oscillations allows to employ a Bayesian
decoding approach as used in experimental studies [2,4,5]. Simulations show that this
model (1) explains the generation of never-experienced sequence trajectories in known
environments, (2) accounts for the bias in place-cell sequences towards goal locations,
(3) highlights their utility in flexible route planning, and (4) provides specific testable
predictions.

Development of synaptic weights, sequential activity and goal-directed behavior. Time
course of the first two simulated trials showing the evolution of context-to-DG synaptic
weights, place-cell sequences and behavior. From left to right: Context-to-DG weights,
decoded sequence, movement trajectory.
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As known from everyday life, humans are permanently exposed to a variety of sensory
inputs from their environment. Thereby, the ongoing challenge, humans have to deal
with, is to continuously and adaptively respond to these sensory stimulations. On the
neuronal level, modification of synapses (interface between two neurons) is a weighty
mechanism for adapting the response properties of neurons according to their external
stimulation. Hereby, synaptic plasticity is the main mechanism underlying learning [1-4]
and, in combination with a homeostatic mechanism, yields the formation of strongly
interconnected subgroups of neurons [5-7], so-called Hebbian cell assemblies (CAs) [1].
Such a CA represents the learned memory trace of the corresponding environmental
stimulus [1]. Moreover, dependent on the details of the stimuli, humans exhibit
the remarkable ability to organize memories (i.e. CAs), thus, to connect, generalize,
and discriminate them, which supports the integration of novel stimuli and enables
complex behavior [8,9]. How these memory organizations are realized on a neuronal
level based on the idea of cell assemblies is still unknown. In a theoretical neuronal
network model, we first analyze its respective dynamics in a mean-field model of two
interconnected, homogeneous populations of neurons. These populations serve as
memory representations on the neuronal level (i.e. CAs; strong synaptic weights). Given
different synaptic learning rules for rate coded neurons [6,7,10,11], we analyze their
abilities to dynamically organize two memories. Our analyses show that, the learning rule
of Hebbian synaptic plasticity in combination with a postsynaptic activity-dependent
synaptic scaling mechanism (SPaSS-rule, [6,7]) enables this functional organization of
memories. Here, dependent on the stimulation protocol, the CAs can be associated,
discriminated, or can form a sequence. Second, to verify our predictions of the mean-field
analysis, we simulate the neuronal dynamics of a recurrent neuronal network using the
SPaSS learning rule. In doing so, we can reproduce the learning rule’s ability to build
up the aforementioned different functional organizations of memories. In summary, this
work reveals a neuronal network model whose dynamics underlie Hebbian plasticity
in combination with a postsynaptic activity-dependent scaling mechanism and that is
capable to exhibit different functional organizations of memories observed in human
behavior.
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plasticity in mouse visual cortex whereas transfer to standard cages
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In standard cage (SC) raised mice, experience-dependent ocular dominance (OD)
plasticity in the primary visual cortex (V1) rapidly declines with age: in P25-35 (critical
period) mice, 4 days of MD are sufficient to induce OD-shifts towards the open eye;
thereafter, 7 days of MD are needed. Beyond P110, even 14 days of MD failed to
induce OD-plasticity in mouse V1 (Lehmann & Löwel, 2008; Espinosa & Stryker, 2012).
In contrast, mice raised in a so-called “enriched environment” (EE), exhibit lifelong
OD-plasticity (Greifzu et al., 2014; 2016). EE-mice have more voluntary physical
exercise (running wheels), and experience more social interactions (bigger housing
groups) and more cognitive stimulation (regularly changed labyrinths or toys). Whether
experience-dependent shifts of V1-activation happen faster in EE-mice and how long
the plasticity promoting effect would persist after transferring EE-mice back to SCs
has not yet been investigated. To this end, we used intrinsic signal optical imaging
to visualize V1-activation i) before and after MD in EE-mice of different age groups
(critical period: PD24-35, young: PD90-104 and adult: PD117-283 mice) and ii) after
transferring mice back to SCs after P130. Already after 2 days of MD, and thus much
faster than in SC-mice, EE-mice of all tested age groups displayed a significant OD-shift
towards the open eye. Transfer of EE-mice to SCs immediately abolished OD-plasticity:
already after 1 week of SC-housing and MD, OD-shifts could no longer be visualized in
EE-mice. In an attempt to rescue abolished OD-plasticity of the EEtoSC-mice, we either
administered the anti-depressant fluoxetine to the mice (in drinking water) or supplied
a running wheel (RW) in the SCs. OD-plasticity after MD was only rescued for the
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RW-mice. Altogether our results show that raising mice in less deprived environments
like large EE-cages strongly accelerates experience-dependent changes in V1-activation
compared to SC-raising. Furthermore, preventing voluntary physical exercise of EE-mice
in adulthood immediately precludes OD-shifts in V1.
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Decades of research have identified neural oscillations as a mechanistic substrate for
the formation of cell assemblies and the coordination of information transfer between
remote brain regions. During exploratory behavior, the hippocampus and the prefrontal
cortex are organized by theta oscillations, known to support memory encoding and
retrieval, while during sleep the same structures are dominated by slow oscillations that
are believed to underlie the consolidation of recent experiences.
Although most known neural oscillations are generated by intra-cerebral pacemakers
and circuits, here we focused our attention to breathing, the most fundamental and
ubiquitous rhythmic activity in life. We report respiratory entrainment of limbic circuits,
including the prefrontal cortex and hippocampus, two structures critically involved in
memory consolidation and retrieval.
Using a combination of extracellular recordings using high-density silicone probes, calcium
imaging, photometry, pharmacological and optogenetic manipulations in mice, we identify
that a rhythmic oscillation (2-6 Hz and termed respiratory θ rhythm) entrains neuronal
activity across structures. We characterize the translaminar and transregional profile of
the respiratory entrainment of the prefrontal cortex and hippocampus and demonstrate a
causal role of re-afferent respiratory inputs in synchronizing neuronal activity and network
dynamics between these structures in a variety of behavioral scenarios in the awake and
sleep state. Prefrontal 4Hz oscillations, recently identified as a physiological signature
of fear memory in mice, are a manifestation of the differential cortical entrainment by
the respiratory θ rhythm during behavior.
Our results highlight respiration, a persistent rhythmic input to the brain, as a novel
oscillatory mechanism mediating inter-regional synchronization of limbic memory circuits
and contributing to the formation and expression of neuronal ensembles.
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We consider an excitatory population of subthreshold Izhikevich neurons which cannot
fire spontaneously without noise. As the coupling strength passes a threshold, individual
neurons exhibit noise-induced burstings. This neuronal population has adaptive dynamic
synaptic strengths governed by the spike-timing-dependent plasticity (STDP) [1]. In
the absence of STDP, stochastic burst synchronization (SBS) between noise-induced
burstings of subthreshold neurons was previously found to occur over a large range
of intermediate noise intensities through competition between the constructive and
the destructive roles of noise [2]. Here, we study the effect of additive STDP on
the SBS by varying the noise intensity D in the Barabasi-Albert scale-free network
(SFN) with symmetric preferential attachment with the same in- and out-degrees [3].
This type of SFN exhibits a power-law degree distribution (i.e., scale-free property),
and hence it becomes inhomogeneous one with a few "hubs" (i.e., super-connected
nodes). Occurrence of a "Matthew effect" in synaptic plasticity is found to occur due
to a positive feedback process. Good burst synchronization gets better via long-term
potentiation (LTP) of synaptic weights, while bad burst synchronization gets worse via
long-term depression (LTD) [see Fig. 1]. Consequently, a step-like rapid transition to
SBS occurs by changing D, in contrast to the relatively smooth transition in the absence
of STDP. Emergence of LTP and LTD of synaptic weights are investigated in details via
microscopic studies based on both the distributions of time delays between the nearest
burst onset times of the pre- and the post-synaptic neurons and the pair-correlations
between the pre- and the post-synaptic IIBRs (instantaneous individual burst rates). We
also investigate the effect of network architecture on SBS for a fixed D in the following
two cases: (1) variation in the symmetric attachment degree and (2) asymmetric
preferential attachment of new nodes with different in- and out-degrees. Finally, a
multiplicative STDP case depending on the states is also investigated in comparison
with the above additive STDP case (independent of the states).

(a) Time window for the STDP. (b) Plot of population-averaged limit values of
synaptic strengths 〈〈J∗_ij〉〉_r versus D. (c) Plot of the statistical-mechanical
bursting measure 〈M_b〉_r versus D.
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In a recent experiment, Xu et al. (2012) have demonstrated that the primary visual cortex
of rats engages in spatio-temporal sequence learning and prediction. Specifically, they
conditioned rats with a light spot moving repeatedly across a portion of their visual field.
They then examined the training effect by briefly flashing the light spot at the starting
location of the sequence. Intriguingly, they found that training enhances the similarity
of cue-triggered multi-unit spiking to multi-unit spiking during training. The cellular
basis underlying the learning in this and similar studies remains unclear, however. Here,
we use a recently introduced spiking neural network model (Miner and Triesch 2016) to
show that the interaction of spike-timing dependent plasticity (STDP) and homeostatic
plasticity mechanisms can explain these experimental results. Our model reproduces the
observed changes in stimulus-evoked multi-unit activity. Furthermore, it predicts how
training shapes network connectivity to establish its prediction ability. Finally, it predicts
that the altered connectivity induces systematic changes in spontaneous network activity.
Taken together, our model establishes a new conceptual bridge between the structure
and function of cortical circuits in the context of sequence learning and prediction.
In addition, it is the first model to explain the sequence learning ability of cortical
circuits while also accounting for non-random structural features of cortical wiring,
such as a lognormal-like distribution of synaptic efficacies and an overrepresentation of
bidirectional connections.
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Processing and categorizing sensory information are fundamental functions of human
and animal brains. To do so, different stimuli have to be mapped on distinct memory
representations or activity patterns. However, noisy versions of the same stimulus have
to be mapped on the same pattern. Across several species [1-4], the involved sensory
areas show a low average activity (sparseness) and the input layer has a smaller number
of neurons than the representation layer (expansiveness). In a previous theoretical
study [5], the authors argue that sparseness and an expansive structure can support the
consistent mapping of noisy stimuli to the same activity patterns. This mapping seems
to be optimal if the weights of the synapses from the input layer to the representation
layer imply activity patterns being attractors of the network’s dynamics [5]. However,
up to now, it is unclear how these attractors can be formed in an unsupervised manner.
Here, we show that the interaction of several well-known synaptic and neuronal plasticity
processes - Hebbian synaptic plasticity [6], homeostatic synaptic plasticity [7], and
homeostatic intrinsic plasticity [8,9] - forms the optimal mapping of stimuli to activity
patterns. For the proper formation of this mapping, each process has a different
distinct role: Homeostatic intrinsic plasticity regulates the representation layer’s activity
keeping it in a sparse state. Hebbian synaptic plasticity increases synaptic weights
between representation layer neurons and related input layer neurons thereby linking
stimuli to sensory representations. Homeostatic synaptic plasticity, in turn, decreases
synaptic weights between non-related input and representation layer neurons minimizing
the chances of undesired activation. Moreover, homeostatic synaptic plasticity in
combination with homeostatic intrinsic plasticity stabilizes the overall synaptic and
neuronal dynamics. Remarkably, after presenting several different stimuli, the interaction
of these processes results in synaptic weights which are similar to the optimal structure
[5] and yield comparable stimulus-to-pattern mapping.
In summary, our study shows that the combination of several, generic plasticity processes
yields the self-organized categorization of sensory stimuli close to optimal. Furthermore,
different homeostatic processes appear to have different functional roles providing a
potential explanation for the need of several homeostatic processes in neural circuits
[10].
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Background: Transcranial direct current stimulation (tDCS) is a promising approach to
treating diseases like depressive disorder or chronic pain. Long lasting aftereffects were
observed after tDCS was turned off. This suggests that plastic changes were induced.
The mechanism of the emergence and maintenance of these aftereffects, however, remain
elusive.
Objective: This study aims at understanding the structural plastic changes caused by
tDCS, with the long-term goal to further improve the performance of this approach in
clinical applications.
Methods: To represent the cortical tissue underneath the electrodes, we set up a
recurrent network of excitatory and inhibitory neurons, in which excitatory-to-excitatory
synapses were established according to a structural plasticity model based on firing
rate homeostasis (Butz and van Ooyen, 2013; Diaz-Pier et al., 2016; Gallinaro and
Rotter, 2017). In our simulations, tDCS induces a weak transient depolarization or
hyperpolarization of the membrane potential of excitatory pyramidal neurons.
Results: Weak deflections of membrane potentials (∆U = 0.1mV) lead to a moderate
change of ongoing neuronal firing rates (∆ν ≈ 1Hz). When a certain proportion of
excitatory neurons within the network is stimulated with tDCS, due to the structural plas-
ticity rule, firing rate changes induce also local connectivity changes. Depolarizing tDCS
leads to local connectivity increase; the increasing magnitude depends on the relative
size of the stimulated population. Hyperpolarizing stimulation and repeated stimulation
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patterns with proper relaxation time can boost the process of local connectivity increase
in depolarizing stimulation.
Conclusions: Our results demonstrate that cell assemblies form in a recurrent network of
spiking neurons subject to structural plasticity and transcranial stimulation that perturbs
the homeostatic equilibrium. Repeated stimulation or stimulation with opposite currents
can enhance connectivity of the new cell assemblies by influencing the rate with which
new synapses are formed. We propose the use of this framework as a tool to study
structural changes in neuronal networks caused by transcranial electrical stimulation.
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When a rodent moves, grid cells in its medial entorhinal cortex fire at the vertices of
a hexagonal lattice spanning the environment [Hafting et al. 2005]. Runs through
these firing fields have been studied by De Almeida et al. [2012]. Based on the spike
number on trajectory segments pointing towards or away from the firing field centers,
these authors argued that grid cells have prospective and retrospective modes. This
finding motivated us to carry out a detailed analysis of the inbound and outbound spikes
using the dataset from Latuske et al. [2015]. We found that there are more inbound
spikes than outbound spikes. At first sight, this suggests that grid cells mostly code
prospectively, similar to findings from hippocampal place cells [Mueller & Kubie 1989;
Sharp 1999]. There is, however, also an alternative interpretation as the body position
inferred from the tracking system may not coincide with the perceived self-center of the
animal. Assuming that the "true" firing fields are ideally suited to guide the animal, we
shifted spikes either in space or in time such that field size, spatial information or spatial
coherence were optimized. When we then analyzed the spikes, their angular distribution
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was almost equalized when spatial shifts were applied, but not for temporal shifts. The
size of optimal shifts suggests that the animal’s perceived self-center is located directly
in front of its head which may support the integration of sensory information.
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Modeling studies of cortical network dynamics aim to include realistic assumptions on
the neuronal properties [1,2]. However, such models are typically bound to neglect
functional aspects that relate to behavior.. Rather, they describe the “ground” or “resting
state” [3] of cortical networks typically characterized as asynchronous irregular spiking [2].
For model validation, i.e., for a concrete comparison of experimental versus model data,
we designed a resting state experiment. We recorded the spiking activity for 15min from
macaque monkey (pre)motor cortex during rest, i.e. without any task, using a chronically
implanted 4x4mm2 100 electrode Utah Array (Blackrock Microsystems). Based on
a video recording of this experiment, we differentiate between “resting” intervals and
intervals of spontaneous movements.
In this study we thoroughly characterize the spiking activity during resting and movement
state. We identify 146 single units and subdivide them into putative excitatory and
inhibitory neurons based on their spike shapes [4]. We estimate their firing rates, (local)
coefficients of variation, and their pairwise fine temporal correlations. Comparing the
distributions of these measures we find only small differences between our two behavioral
states: during movement temporal correlations are more broadly distributed with a lower
average value compared to resting periods. Furthermore, we find that putative inhibitory
neurons fire faster and more regular compared to putative excitatory neurons in both
states. When focusing on single units, we notice that several neurons increase their
firing rates systematically when the monkey moves compared to rest, whereas others
decrease or do not change their rates. We use cross-correlation histograms (CCH) to
identify possible monosynaptic connections and groups of intracorrelated units. In the
averaged CCH we observe oscillations of about 30Hz that are especially pronounced
in putative inhibitory neurons and during rest. In conclusion, there is relatively little
difference between behavioral states on the population level, but clear differences on the
level of individual neurons.
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Learning in the human brain is heavily based on non-supervised, associative learning.
Here, Hebbian learning rules [1] can be observed as a generalization of concepts which
can be refined in terms of signals types and occurrences e.g. towards Spike-Timing
Dependent Plasticity. While on higher layers complex sensory spaces are processed to
execute (deliberative) behaviors, on a lower level sensor stimuli inputs directly result
into muscle activities. An association between sensor and motor signals in a spatial
and temporal relation is learned, or motor behaviors associated to sensor events. This
association process is demonstrated in a closed-loop experiment where the sensory space
of a biomimetic robotic arm based on [2] is connected to motor commands with a neural
network that applies variations of Hebbian learning [3]. In interactive experiments with
human users we observe synaptic strengthening between neurons that process occurring
sensory and motor events in a spatial as well as temporal context. Learned correlations
are stored distributed in synaptic connections between neuron units and represent
observed event types, variations and time of occurrences. The internal representation is
robust against noise in sensor signal amplitudes. The executed experiments emphasize
the potential of Hebbian like learning rules in unsupervised closed loop learning scenarios.
While we demonstrate a short circuit experiment with few sensory inputs only, we see
the potential of up-scaling to higher neural layers including a variety of sensory domains
and hereby sophisticated reactions on complex sensory spaces.

Experiment Platform: A Myorobotics Anthropomimetic Arm

Acknowledgements
The research leading to these results has received funding from the European Unions Horizon 2020
Research and Innovation Programme under Grant Agreement No. 720270 (HBP SGA1)

75

https://doi.org/10.12751/nncn.bc2017.0060


Posters Wednesday

References
1 D. Hebb “The Organization of Behavior”, 1949, New York: Wiley & Sons.
2 M. Jäntsch, S. Wittmeier, K. Dalamagkidis, A. Panos, F. Volkart and A. Knoll, "Anthrob - A printed

anthropomimetic robot", 2013, 13th IEEE-RAS International Conference on Humanoid Robots
(Humanoids), Atlanta, GA, pp. 342-347 10.1109/HUMANOIDS.2013.7029997

3 S. Ahmad, J. Hawkins “How do neurons operate on sparse distributed representations? A mathematical
theory of sparsity, neurons and active dendrites”, 2016, arXiv:1601.00720 [q-NC]

©(2017) Feldotto B, Walter F, Röhrbein F
Cite as: Feldotto B, Walter F, Röhrbein F (2017) Hebbian Learning Based Sensorimotor As-
sociation in a Closed-Loop Neurorobotic Experiment. Bernstein Conference 2017 Abstract.
doi: 10.12751/nncn.bc2017.0061

[W 43] Biophysical Foundation and Function of the Depolarizing
Afterpotential in Principal Cells of the Medial Entorhinal Cortex
Caroline Fischer1, Franziska Kümpfbeck1, Johannes Nagele1, Stefan Häusler1, Martin
Stemmler1, Felix Felmy2, Andreas Herz1

1. Department Biology II, Ludwig-Maximilians-Universität München, Großhaderner Str. 2 82152 Planegg-
Martinsried, Germany

2. Institut für Zoologie, TiHo Hannover, Bünteweg 17, 30559 Hannover, Germany

Neurons in layer II of the rodent medial entorhinal cortex (mEC) encode spatial in-
formation. One particular group - grid cells - tend to fire at specific spatial locations
that form hexagonal lattices covering the explored environment. In addition, grid cells
show frequent and highly irregular burst episodes within these firing fields. Such burst
episodes have received little attention but may contribute substantially to encoding
spatial information. In vitro recordings of mEC principal cells have revealed that the
action potential is followed by a prominent depolarizing after-potential (DAP). Its
biological function, biophysical foundation, and relation to other electrophysiological
features are, however, poorly understood. Using a paired-pulse paradigm, we therefore
investigated the function of DAPs in vitro and studied how they influence the generation
of further action potentials. The intensity of the first current pulse was chosen to elicit
an action potential; the intensity of the second pulse was adjusted until a 2nd spike was
fired. During the DAP the current needed for generating the 2nd spike was strongly
reduced. To investigate the biophysical foundation of DAPs, we modeled mEC principal
cells using single-compartment models with Hodgkin-Huxley like ion channels. The
model reproduced key cell characteristics: Sag potentials during hyperpolarizing steps,
membrane-potential resonance during ZAP stimuli, and the main DAP characteristic:
Facilitation of spike generation during the DAP. Visualizing the current kinetics, we
found that all currents in the model (Inat, Inap, Ikdr, Ipas, Ih) contribute to the DAP.
A reopening of the fast sodium current seems to be necessary for DAP generation.
Many layer II neurons show DAPs. However, it is not clear whether these neurons
belong to distinct neural subpopulations. Therefore, we performed both supervised and
unsupervised statistical data analyses to understand the parameter variation across the
population. Our analysis suggests that the existence of a DAP can be predicted by a
set of electrophysiological parameters. Yet, our results do not support the idea that the
absence or presence of DAPs alone allows for classifications into specific principal cell
types. Taken together our results indicate that DAPs facilitate bursting, are not specific
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to a certain type of mEC cells, and their origin cannot be attributed to a single ion
channel.
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Sparse representations of natural stimuli have been shown to be useful models of neuronal
population codes in various sensory systems [1]. Here we investigate whether sparse
coding of head motion yields efficient representations and whether there is physiological
evidence for this coding principle. To this end, we learned a sparse code from recordings
of linear acceleration and angular velocity of the human head. The code consists of a
set of signal-adapted basis functions, or kernels, that represent temporal patterns of all
six degrees of freedom of movement. We found that, although the sparse code could
reduce the redundancy in the measured motion data, we could not find highly efficient
representations in the same way as in other modalities such as vision and audition.
Furthermore, comparing the properties of the learned kernels with those of convergent
neurons in the vestibular nucleus (VN) yielded only weak similarities. Based on these
results, we argue that efficient encoding of natural stimuli is not the primary focus of
the vestibular neural code.
We recorded linear acceleration and angular velocity of head motion from 10 different
subjects performing 7 different activities each (running, biking, walking on grass, walking
on pavement, playing soccer, walking upstairs, walking downstairs) using an inertial
measurement unit. Furthermore, we recorded a second set of data from 3 different
subjects over the course of one whole day. Both datasets were used to learn a sparse
code with different previously published sparse coding algorithms. The coding capacity
was evaluated by encoding a distinct set of test data with the learned kernels and
measuring the error of reconstruction from the coded data.
We found that the coding capacity of the learned kernels was significantly lower when
compared to basis functions learned from images or sound. Furthermore, we developed
several experiments that compare the kernels’ properties to those of VN neurons
(spatiotemporal tuning, sensitivity to linear acceleration vs angular velocity, sensitivity
to gravitational vs translational acceleration), showing only limited similarities.
We argue that there are different reasons for the observed results: the inherent non-
linear topological structure of motion cannot be faithfully represented by the linear
sparse-coding model and the vestibular system has no behavioral motivation to efficiently
encode natural head motion [3].

77

https://doi.org/10.12751/nncn.bc2017.0062


Posters Wednesday

Acknowledgements
This work was funded by the BMBF grants 01GQ1004A and 01GQ1004B.

References
1 Olshausen, Bruno A. ; Field, David J.: Sparse coding of sensory inputs. In: Current Opinion in

Neurobiology 14 (2004), Nr. 4, p. 481–487 10.1016/j.conb.2004.07.007
2 Dickman, J. D. ; Angelaki, Dora E.: Vestibular Convergence Patterns in Vestibular Nuclei Neu-

rons of Alert Primates. In: Journal of Neurophysiology 88 (2002), Nr. 6, p. 3518–3533
10.1152/jn.00518.2002

3 Klingner, C. M.; Axer, H; Brodoehl, S.; Witte, O. W.: Vertigo and the processing of vestibular
information: A review in the context of predictive coding. In: Neuroscience and Biobehavioral Reviews
71 (2016), p. 379-387 10.1016/j.neubiorev.2016.09.009

©(2017) Hausamann P, Glasauer S, Kleinsteuber M, MacNeilage P
Cite as: Hausamann P, Glasauer S, Kleinsteuber M, MacNeilage P (2017) The vestibular neu-
ral code is driven by robustness rather than efficiency. Bernstein Conference 2017 Abstract.
doi: 10.12751/nncn.bc2017.0063

[W 45] Generative adversarial networks as integrated forward and
inverse models for motor control
Movitz Lenninger1,2, Carsten Mehring2, Hansol Choi2

1. School of Computer Science and Communication, KTH Royal Institute of Technology, Brinellvägen 8,
114 28 Stockholm, Sweden

2. Bernstein Center Freiburg and Faculty of Biology, University of Freiburg, Hansastrasse 9A 79104
Freiburg, Germany

Previous studies in computational motor control support the notion that the human
brain uses internal models to control voluntary movements. The forward model predicts
the future state, while the inverse model computes the control command to achieve
a desired state. Everyday human motor behaviors involve the coordination of many
limbs and muscles. It remains unclear what kind of algorithm the brain uses for
high dimensional internal models. Generative adversarial networks (GAN) were proven
successful in generating novel samples from a learned high-dimensional distribution
[1]. Moreover, GANs were able to successfully complete missing information in high-
dimension samples[2]. Here, we test a GAN as an integrated forward and inverse model
for motor control. We used a two-link arm environment as a toy model. The state of
each of the two links is defined by an angle and an angular velocity. Control commands
affect the angular velocities. First, we trained a deep network G to encode the dynamics
of the system. The arm’s pre-act-post states (pre-action state, action and post-action
state) were sampled by random motor babbling. In an adversarial training process,
G was trained to generate novel pre-act-posts samples closer to the true distribution,
compared to the initial untrained network. Next, we tested whether G can behave as
a forward and inverse model. We provided only partial information to G (pre-act for
forward and pre-post for inverse) to investigate whether G can complete the missing
information. We found that our trained network could more accurately predict the
missing variables, compared to untrained networks: post for forward and act for inverse,
as required for the internal models. The current study demonstrates that GANs can be
used as an integrated forward and inverse model [3] in a simple motor control problem
(R14). As GANs have previously been successfully applied in generating high dimensional
data samples, we expect that our method can be extended into control problems in
higher dimensions, however, this remains to be shown in future investigations .

78

http://dx.doi.org/10.1016/j.conb.2004.07.007
http://dx.doi.org/10.1152/jn.00518.2002
http://dx.doi.org/10.1016/j.neubiorev.2016.09.009
https://doi.org/10.12751/nncn.bc2017.0063


Training reduced the error between the true and the generated samples

References
1 Goodfellow, Ian, et al. "Generative adversarial nets." Advances in neural information processing

systems. 2014.
2 Yeh, Raymond, et al. "Semantic image inpainting with perceptual and contextual losses." arXiv

preprint arXiv:1607.07539 (2016).
3 PICKERING, Martin J.; CLARK, Andy. Getting ahead: forward models and their place in cognitive

architecture. Trends in cognitive sciences, 2014, 18.9: 451-456. 10.1016/j.tics.2014.05.006

©(2017) Lenninger M, Mehring C, Choi H
Cite as: Lenninger M, Mehring C, Choi H (2017) Generative adversarial networks as integrated forward and
inverse models for motor control . Bernstein Conference 2017 Abstract. doi: 10.12751/nncn.bc2017.0064

Neurons, networks, dynamical systems
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A prominent type of oscillatory activity are gamma rhythms, which may play an important
role in neuronal information processing. Two mechanisms have mainly been proposed
for their generation: Interneuron Network Gamma (ING) and Pyramidal-Interneuron
Network Gamma (PING). Experiments have shown that both mechanisms can exist in
the same cortical circuits. This raises the question: how do ING and PING interact
when both can in principle occur? Are the network dynamics a linear superposition, or
do ING and PING interact in a nonlinear way and if so, how?
To address these questions, we first generalize the phase representation for nonlinear
one-dimensional pulse coupled oscillators as introduced by Mirollo and Strogatz to type II
oscillators with a phase response curve with zero crossings. We then give a full theoretical
analysis for the regular gamma-like oscillations of simple networks consisting of two
neural oscillators, an “E-neuron”, mimicking a synchronized group of pyramidal cells,
and an “I-neuron” representing such a group of interneurons. The phase representation
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allows to define in simple manner scenarios of interaction between the two neurons,
which are independent of the details of the neuron models. We analytically derive the
relevant scenarios and characterize their occurrence.
The networks can be tuned to oscillate in ING or PING mode. We focus particularly
on the transition region, where both rhythms compete to govern the network dynamics
and compare with oscillations in reduced networks, which can only generate either ING
or PING. Our analytically derived oscillation frequency diagrams indicate that except for
small coexistence regions, the networks generate ING, if the oscillation frequency of the
reduced ING network exceeds that of the reduced PING network, and vice versa. For
type I I-neurons the network oscillation frequency slightly exceeds the frequencies of
corresponding reduced networks; it lies between them for type II I-neurons. In networks
oscillating in ING (PING) mode, the oscillation frequency responds faster to changes
in the drive to the I (E)-neuron than to changes in the drive to the E (I)-neuron. The
finding suggests a method to analyze which mechanism governs an observed network
oscillation. Notably, also when the network operates in ING mode, the E-neuron can
spike before the I-neuron such that relative spike times of the pyramidal cells and the
interneurons alone are not conclusive for distinguishing ING and PING.
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The spiking activity of single neurons can be well described by a nonlinear integrate-and-
fire model that includes somatic adaptation. When exposed to fluctuating inputs sparsely
coupled populations of these model neurons exhibit stochastic collective dynamics that
can be effectively characterized using the Fokker-Planck equation. This approach,
however, leads to a model with an infinite-dimensional state space and non-standard
boundary conditions. Here we derive from that description four simple models for the
spike rate dynamics in terms of low-dimensional ordinary differential equations using two
different reduction techniques: one uses the spectral decomposition of the Fokker-Planck
operator, the other is based on a cascade of two linear filters and a nonlinearity, which
are determined from the Fokker-Planck equation and semi-analytically approximated.
We evaluate the reduced models for a wide range of biologically plausible input statistics
and find that both approximation approaches lead to spike rate models that accurately
reproduce the spiking behavior of the underlying adaptive integrate-and-fire population.
Particularly the cascade-based models are overall most accurate and robust, especially
in the sensitive region of rapidly changing input. For the mean-driven regime, when
input fluctuations are not too strong and fast, however, the best performing model is
based on the spectral decomposition. The low-dimensional models also well reproduce
stable oscillatory spike rate dynamics that are generated either by recurrent synaptic
excitation and neuronal adaptation or through delayed inhibitory synaptic feedback. The
computational demands of the reduced models are very low but the implementation
complexity differs between the different model variants. Therefore we have made
available implementations that allow to numerically integrate the low-dimensional spike
rate models as well as the Fokker-Planck partial differential equation in efficient ways
for arbitrary model parametrizations as open source software. The derived spike rate
descriptions retain a direct link to the properties of single neurons, allow for convenient
mathematical analyses of network states, and are well suited for application in neural
mass/mean-field based brain network models.
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Network of adaptive exponential integrate-and-fire neurons, mean-field Fokker-Planck
model and derived low-dimensional spike rate models. From top to bottom: fluctuating
external input, membrane voltage (one neuron and the population), adaptation current,
spike times, spike rate of all models (2x).
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A perennial question in computational neuroscience is the ‘neural code’ employed by spik-
ing assemblies. A convenient model system are assemblies with self-organized instability
expressed as all-or-none synchronization events (‘network spikes’). We simulated and
analyzed assemblies with random (unstructured) connectivity, synapses with short-term
plasticity, with and without external stimulation. Here we show that unstructured
connectivity begets a class of privileged ‘pioneer’ neurons that herald network spikes (i.e.,
by discharging reliably during the incipient phase) and that, by means of the rank-order
of their firing, encode the site of any external stimulation. We also demonstrate that
existence of pioneers is strongly enhanced by a topological heterogeneity.
Firstly, we show how pioneers arise from an interaction between sensitivity and influen-
tialness, in a manner reminiscent of an amplifier. This clarifies the mechanisms that
produce pioneers and their distinctive behavior. Secondly, the rank-order of pioneer
discharge reliably encodes the site of any external stimulation, in stark contrast to
rate-based encoding schemes. We demonstrate this by stimulating the network at one of
five alternative locations and by seeking to decode the stimulated location from different
measures of activity (both rate- and time-based). Thirdly, by mapping the number of
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‘pioneers’ as a function of recurrent excitation, inhibition, and type of topology, we show
that an unstructured and broadly heterogeneous connectivity begets more pioneers than
scale-free or homogeneously random connectivity (Figure 1). (Analysis based on interval
from neuron discharge to peak population activity. Pioneer neurons exhibit mean larger
than standard deviation.) Thus, a robust fraction of pioneers requires more than mere
presence of ‘hubs’ (e.g., scale-free topology).
We conclude that random assemblies with self-organized instability offer valuable insights
bearing on the issue of ‘neural coding’. Finally, we propose such assemblies as a minimal
model for the privileged ‘pioneer neurons’ that reliably predict network spikes in mature
cortical neuron assemblies in vitro [1,2].

Fraction of pioneer neurons (in %) and E/I balance, for various unstructured connection
topologies: (A) homogeneous random, (B) scale-free random, (C) heterogeneous
random. In A and B, pioneers are restricted to a comparatively narrow regime. In C,
the domain of pioneers is greatly enlarged.
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Over the last decade, evidence is accumulating that single neurons can have an impact
on the activity of large neural networks [1]. One particularly striking example is that
awake rats can be trained to report the transient stimulation of a single cortical cell [2].
This finding seems to be in contrast with studies suggesting that cortical networks are
chaotic and therefore only averages on large populations encode information [3].
As a first take on this still unanswered theoretical problem, we test the "null hypothesis":
we study whether the stimulation of a single cell can be detected in one of the simplest
models capable of reproducing the asynchronous irregular spiking of the cortex: a
random network of excitatory and inhibitory leaky integrate-and-fire neurons [4]. To
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mimic the long-tailed distribution of postsynaptic potentials measured in the cortex [5],
synaptic couplings are drawn here from an exponential distribution [6].
We propose a simple readout mechanism to detect the occurrence of the stimulus.
We show with numerical simulations and analytical estimates that detection rates are
comparable to the experimental results if the readout is slightly biased toward specific
neurons, a proxy for the training of the experimental subjects [7].
Furthermore, we observe that a second network acting as readout requires a smaller bias
to detect the occurrence of the single-cell stimulation. This improvement in the detection
performance is due to inhibitory neurons in the readout removing input cross-correlations
[8], which are the main source of detection-limiting fluctuations.

A randomly selected neuron (B_0) is transiently stimulated, mimicking [2]. The
readout population A is a random selection of neurons with a bias towards B_1, the
direct postsynaptic targets of B_0. The activity of A is fed to the readout.
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[W 51] Dissecting the Sholl intersection profile
Alex D Bird1, Hermann Cuntz1

1. FIAS, Frankfurt, Germany

Sholl analysis has been an important technique in dendritic morphometry for over sixty
years [1]. In counting the number of dendritic branches at a given distance from the
soma, the Sholl intersection profile collapses three-dimensional neuronal structure into
a one-dimensional representation: dendritic complexity as a function of distance. The
collapsed representation facilitates comparison of different morphologies; be they similar
neurons from different brain regions[2] or those displaying the effects of pathology[3].
We have investigated how far Sholl intersection profiles can be predicted by other
dendritic measures. This allows us to directly interpret differences between Sholl profiles
as differences in the functionality of a neuron.
The two measures needed to predict a Sholl profile are the domain spanned by the
dendritic arbor and the angular distribution of how far dendritic segments deviate from
a direct centripetal path to the soma. The first measure is principally determined by
axon location and hence microcircuit structure; the second arises from optimal wiring
considerations whereby dendrites with a stronger centripetal bias will typically have
shorter path lengths between afferent synapses and the soma. The latter measure is
quantified by a new metric: the root angle. These two factors predict the Sholl profiles
of large numbers of neurons taken from the NeuroMorpho[4] database.
We have reinterpreted a widely-used morphometric measure to have a functional meaning,
allowing differences and changes in Sholl profiles to be analysed in terms of their
consequences for the cell.
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Mutual phase synchronization of coupled nonlinear oscillators encompasses a broad range
of phenomena in science and engineering [1]. Most of the theoretical and experimental
work assumes instantaneous coupling schemes, where the signal propagation speed
between individual oscillators is considered as infinitely fast. Nonetheless, over the
last decades it became clear that signal time delay can play a significant role in
complex systems such as gene-regulator networks or coupled neuronal oscillator networks.
Interestingly, it turned out that time delay can lead to counterintuitive results. For
example, delay can induce or suppress instabilities in otherwise stable and non-stable
complex dynamical systems, respectively [2]. Here we present our results on relaxation-
type oscillators comprising a finite time delay during pulse coupling. The oscillators are
based on programmable unijunction transistor circuits, which offer a simple read out of
the pulse trains (spike patterns) as well as the realization of excitatory and inhibitory
coupling schemes. A Field Programmable Gate Array (FPGA, Cyclon V) was applied
to generate adjustable signal time-delays. For both, the oscillator period and the time
delay, biological relevant times in the order of several tenth´s of milliseconds were used.
The spikes of a relaxation oscillator were delayed and feed back to the excitatory and
inhibitory input of the same oscillator [3]. This self-projected system led to different
patterns and can be considered as the simplest system to study reentry mechanisms
[4,5].
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In V1, neuronal responses are sensitive to context: responses to stimuli presented within
the classical receptive field (cRF) are modulated by stimuli in the surround. Recently,
sparse coding models [1] have been successful in explaining part of these modulatory
effects [2]: Their dynamics implements an inference process to seek an optimal (w.r.t.
accuracy and sparseness) representation of a visual input in terms of fundamental
features. This is achieved through a competition between similarly tuned neurons
with overlapping input fields, which also mediates contextual modulation. However,
this connection scheme implies that neurons with non-overlapping input fields do not
interact. Therefore, the proposed mechanism cannot explain the majority of contextual
modulations since these are usually caused by surround stimuli positioned far from the
cRF. To overcome this limitation, we propose an extension of the classical framework
[2] by defining a new generative model for visual scenes that includes dependencies
among different features in spatially well-separated locations (Fig.1AB). To perform
inference in this model, we also derive a biologically inspired dynamics and a lateral
connection scheme for optimally processing local and contextual information. The result
can be interpreted as a neural network where units are linked by short range horizontal
connections within the same hypercolumn and by long range connections between
different hypercolumns (Fig. 1C). Each hypercolumn contains units that receive input
from a localized region of the visual field and builds a sparse representation of its input
as if it was presented in isolation. In parallel, these local representations are combined
by providing contextual information to each other. In our simulations connections
are learned from natural images. Long-range connections reflect the co-occurrence of
features in different visual field locations: this predicts a connectivity structure linking
neurons with similar orientation and spatial frequency preferences, which is similar to
the typical patterns found for long-ranging (3-4mm) horizontal axons in visual cortex [4].
Subjected to contextual stimuli typically used in empirical studies, our model replicates
several hallmark effects of contextual processing, part of which [3] were not explained
by [2]. In summary, our model provides a novel framework for contextual processing in
the visual system proposing a well-defined functional role for horizontal axons.

(A) Example of stimuli from a natural scene (top) and dictionary of fundamental
features (bottom) (B) Scheme of the generative model (C) Network architecture to
perform inference in the generative model
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Na-K-ATPases regulate cellular homeostasis by maintaining ionic concentrations on both
sides of neuronal membranes within physiological ranges. It has also been suggested that
they contribute to neural computation, in particular to mechanisms of adaptation [1,
2]. There is, however, no general agreement on the pumps’ computational contribution
especially, as there are alternative mechanisms to create spike-frequency adaptation,
such as M-type or calcium-activated potassium channels. In this study, we take a
mathematical modeling approach to shed further light on the computational relevance of
the Na-K-ATPase. To this end, a conductance-based neuronal point model is combined
with previously described dynamics of the Na-K-ATPase, allowing intracellular and
extracellular ionic concentrations to vary. At first glance, the net current produced
by the pump reduces a cell’s excitability comparable to the adaptation mediated by
slow potassium channels, see also [3, 4]. As we demonstrate, however, pump activity
and the associated changes in ionic concentrations also result in a less predictable
yet computationally relevant feature of neuronal dynamics. We analyzed the neuron
model during stimulation with fast, zero-mean noise on top of a prolonged step current
that takes the neuron to a mean-driven firing regime. After the onset of mean-driven
firing, pump activity progressively increases (due its dependence on voltage and internal
Na, the latter of which accumulates over seconds). As expected, a hyperpolarizing
current results and mediates spike-rate adaptation. Consequently, also the neuron’s
attractor location changes (in terms of effective current threshold) and – provided
the stimulus persists – results in a pump-induced shift of neuronal dynamics from an
initially mean-driven towards a fluctuation-driven regime (with ensuing consequences for
encoding of time-dependent stimulus components, see for example [5]). Interestingly,
the pump-induced current eventually (in our case after 5 sec) also induces bistable firing:
the cell translates from stimulus-driven irregular firing to highly irregular patterns of
stochastic bursting. We found this bursting to persist even for higher stimulus cut-off
frequencies, suggesting an intrinsic bistability of the neuron. Pump-induced bursting
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may hence be a relevant property of strongly stimulated neurons and its functional
relevance for computation in local networks remains to be explored.
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Despite the large amount of shared input between nearby neurons in cortical circuits,
massively parallel spiking recordings of various in vivo networks exhibit pairwise covari-
ances in ensembles of neuronal spike trains that are on average close to zero [1]. The
low average has been well understood in terms of active decorrelation by inhibitory
feedback [2,3] in networks that operate far away from the critical point, which marks
the onset of avalanche-like activity [4]. Experiments, however, also show large variability
of covariances across pairs of neurons. An explanation for their wide distribution in
relation to the static (quenched) disorder of the connectivity in recurrent networks is
so far elusive. Here we combine ideas from spin-glass theory [5] with a generating
function representation for the joint probability distribution of the network activity [6]
to derive a finite-size mean-field theory that reduces a disordered to a highly symmetric
network with fluctuating auxiliary fields (Fig. 1). The theory relates the statistics of
covariances to the statistics of connections, in particular the largest eigenvalue of the
connectivity matrix, and explains the experimentally observed covariance distributions
[7]. The analytical expressions expose that both, average and dispersion of the latter,
diverge at a critical point which has been studied in terms of a transition from regular
to chaotic dynamics [8,9,10]. This critical point does not arise from net excitation, but
rather from disorder in networks with balanced excitation and inhibition. Applying these
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results to recordings from motor cortex suggests its operation close to this breakdown
of linear stability.

Disorder average maps network with frozen variability in connections to highly sym-
metric network with fluctuating auxiliary fields.
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In order to cope with ambiguous, incomplete and noisy sensory input, the brain is
believed to rely on some form of probabilistic computation [1-4]. Within this context of
"Bayesian brain", it has been suggested to interpret neural firing activity as sampling
from a probability distribution [5-9]. Recently, it was shown that networks of Leaky
Integrate-and-Fire (LIF) neurons can approximately sample from Boltzmann distributions
with binary random variables when elevated into a high-conductance state via high-
frequency Poisson noise which endows LIF neurons with approximately logistic activation
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functions [10]. Such spiking Boltzmann machines can then be trained from sensory
inputs to perform inference in the corresponding data spaces [11].
Here, we present the first realization of such LIF networks on the BrainScaleS system
[12]. BrainScaleS is a mixed-signal neuromorphic device that enables the fast emulation
of spiking neural networks with a speedup of 104 compared to biological time. We
report that on BrainScaleS, sigmoidal response functions can be reliably set up (Fig.
1A), which is a necessary precondition for training such networks on hardware. During
training, parameter updates are calculated on a standard computer between consecutive
emulations of the network on hardware. After training, the firing activity of the emulated
network approximates the desired target distribution (Fig. 1B); the remaining deviations
are due to the limited configurability of hardware parameters, as for instance the 4-bit
weight resolution.
In addition, since the external bandwidth of the hardware system is limited, the total
amount of available Poisson noise is bounded as well, restricting the maximal number
of neurons that can be elevated into the high-conductance state. Inspired by the
mammalian cortex, where neurons are exposed to the activity of some 104 presynaptic
partners [13], we demonstrate in simulations that high-frequency Poisson noise can be
successfully replaced by the spiking activity of adjacent functional networks (Fig. 1C).
This way, networks of networks can be constructed where each neuron only uses the
activity from adjacent LIF networks as irregular background input, with zero external
Poisson input (Fig. 1D). We believe that this approach will enable the implementation
of large-scale networks of deterministic LIF neurons on large-scale neuromorphic systems
that can perform stochastic computations without bandwidth-consuming external noise.

(A) Response functions of four different hardware neurons. (B) Sampling on hardware
with a network of four neurons. (C) The spiking activity of adjacent networks can
be used as irregular input. (D) Networks without external noise are able to reach a
similar sampling quality as with Poisson noise.
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[W 57] On the organization of functional subunits in dendrites of
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Dendrites of many neuron types exhibit complex morphologies and spatially modulated
distributions of ionic channels (Major et al., 2013). These cell-type specific characteristics
generate non-trivial integrative properties that cannot be described by single compartment
models. In an attempt to find simple computational models that mimic key morphological
features, a cascade of linear filters followed by a static nonlinearity has turned out to
be a promising candidate (Häusser & Mel, 2003, Larkum et al., 2009). This two-layer
processing scheme captures the somatic responses of CA1 pyramidal cells to synaptic
input to basal and proximal dendrites but sometimes fails for synaptic input to distal
dendritic branches in the tuft.
We investigate whether such “anomalous” responses to synaptic input to the tuft can
be modeled by cascades that implement additive or multiplicative feedback. To identify
such extended cascades, we apply iso-response methods (see Gollisch & Herz, 2012),
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where inputs to a dynamical system are varied such that a chosen output measure
stays constant. These stimuli define lower-dimensional “iso-response manifolds” whose
shape directly reflects the stimulus interaction. We show that all nonlinearities and the
feedback of a cascade can be inferred from a few iso-response manifolds.
We apply this approach to a detailed multi-compartment model of a CA1 pyramidal cell
(Poirazi et al., 2003) and show that i) feedback improves the prediction of the somatic
response to proximal synaptic input but plays only a minor functional role (cascades
without feedback have already low prediction error), ii) multiple dendritic branches in
the proximal apical dendrites and the tuft form large functional subunits, iii) somatic
responses to synaptic input to terminal branches in the tuft cannot be modeled by
feed-forward cascades (without feedback), iv) most of these “anomalous” responses can
be described by cascades that implement feedback.
Overall, these results demonstrate that iso-response methods are a powerful tool to
decipher dendritic function, applicable to multi-electrode or photostimulation techniques.
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The study of the dynamics and function of cortical circuits has typically proceeded either
in a bottom-up fashion, identifying the biological mechanisms responsible for a variety
of experimental findings, without reference to computational function, or by top-down
approaches which link features of neural activity to specific computations, without
specifying underlying circuit-level mechanisms. Here we bridge these two approaches
and study the dynamics and function of cortical circuits in a unifying framework.
Specifically, we develop novel methods for training stochastic neural networks with
biological constraints, such as Dale’s principle and realistic single-neuron activation
functions [Priebe & Ferster, 2008], to match the statistical moments of network activity
to full response distributions rather than to deterministic target activities (for the details
of the methods, see [Hennequin & Lengyel, 2016]). We show that V1-like dynamics
emerge for both trial-averaged activities and across-trial variability in excitatory-inhibitory

94

https://doi.org/10.12751/nncn.bc2017.0076


networks (Fig. 1A, right) trained for sampling-based inference under the Gaussian Scale
Mixture (GSM) model, a widely-used generative model of natural images [Wainwright
& Simoncelli, 2000; Orbán et al., 2016] (Fig. 1A, left).
We first show that the GSM posterior mean grows with stimulus contrast z, superlinearly
for small z and saturating for large z, while the posterior variance decreases with
contrast. These relationships are successfully reproduced by the trained network, which
furthermore appropriately generalizes to novel stimuli (Fig. 1B, left) and reproduces the
stimulus-dependence of GSM posterior correlations (Fig. 1C). Finally, we show that
the network operates in the dynamical regime of stabilized supralinear networks (SSN)
that accounts for highly nonlinear properties of both across-trial mean and variability of
V1 responses [Rubin et al., 2015; Hennequin et al., 2016]. Thus, our results suggest
a generic function for inhibition-stabilized dynamics with a loose excitation-inhibition
balance: they are ideal substrates for fast probabilistic inference with recognition models.
Conversely, our approach could also be used to infer the brain’s internal models based
on observed dynamics.

Color code: GSM (green), SSN (red), color intensity indicates contrast level. A) Sketch
of both models. B) Mean and std. of the membrane potentials (left: population
average); middle & right: shown for each neuron). C) Full membrane potential
correlation matrices.
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It is a long-standing hypothesis that the functional architecture of the primary visual
cortex (V1) can be quantitatively understood as the solution of an optimization principle.
If this hypothesis is correct, the strong individual variability of the specific layout of
functional columns in V1 found experimentally indicates that there cannot be only a
single optimal architecture of V1. Indeed the currently best-supported models of V1’s
functional architecture [1] exhibit multidimensional manifolds of solution families that
represent degenerate optima [2]. Any parameterization of this manifold provides a
system of effective degrees of freedom of the entire system.
Here we examine whether and how the configuration of pinwheel positions can be used
as such a system of effective degrees of freedom. Using methods from the mathematical
theory of pattern forming systems we first show that under general symmetry assumptions
the phases of individual Fourier components of the pattern of orientation domains are
independent and degenerate. Their number is finite, grows linear with the range of
nonlocal interactions and sets the dimensionality of a torus of degenerate optima. We
examine the influence of moving along this torus and find that only a subset of directions
maps to genuine changes of the columnar arrangement. In particular we derive one
set of basis vectors that leave the configuration of pinwheel positions invariant and a
complementary set that leads to genuinely different pinwheel configurations. The finite
dimensionality of these sets demonstrates that in such optima, pinwheel positions are not
independent degrees of freedom but are correlated such that a finite subset of pinwheels
positions determines the configuration of all. We then examine the mapping between
the experimentally observable pinwheel positions and the abstract phase representation
of the manifold. We find that the requirement of minimal rearrangement of the system
of orientation domains leads to a simple mapping between phase changes and relative
pinwheel positions.
It is currently unknown whether the biologically observable visual cortical architecture
in fact represents one point on a continuous steady state manifold. The formalism
developed in this work lays the foundations to predict signatures of state manifold
topology and dimension in the correlated motion of pinwheel defects.
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The vicinity of phase transitions selectively amplifies weak stimuli, yielding optimal
sensitivity to distinguish external input. Along with this enhanced sensitivity, enhanced
levels of fluctuations at criticality reduce the specificity of the response. Given that the
specificity of the response is largely compromised when the sensitivity is maximal, the
overall benefit of criticality for signal processing remains questionable. Here it is shown
that this impasse can be solved by heterogeneous systems incorporating functional
diversity, in which critical and subcritical components coexist. The subnetwork of
critical elements has optimal sensitivity, and the subnetwork of subcritical elements has
enhanced specificity. Combining these segregated features extracted from the different
subgroups, the resulting collective response can maximise the dynamic-range-to-noise-
ratio. Although numerous benefits can be observed when the entire system is critical,
our results highlight that optimal performance is obtained when only a small subset of
the system is at criticality.
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In the visual system complex scenes have to be integrated from simple local features
into global and meaningful percepts. Contour integration, a basic process useful for
figure-ground segregation and object recognition, is already well understood in terms of
orientation alignment. However, there are other features playing a role in this process.
Spatial frequency for example has a strong influence on contour visibility. To gain
deeper insights into the process of contour integration, we quantified the effect of
spatial frequency (SF) on contour visibility as a second cue and investigated if the
observed psychophysical effects can be explained by a simple neural mechanism: We
hypothesized that interactions are strong between neurons with similar preferred SFs, and
that the effective range of the interactions scales with SF. Specifically, we constructed a
structurally simplistic cortical model integrating contour integration stimuli consisting
of oriented Gabor patches with different orientations and SFs, into which contours
of aligned and/or SF-homogeneous patches were embedded. Feature integration in
the model is performed by recurrent interactions between populations with receptive
fields (RFs) selectively tuned to orientation and spatial frequency of localized stimulus
patches. Excitatory connections realize a long-ranging association field with strong
links between collinear and co-circularly aligned RFs. Inhibitory interactions provide
medium-range normalization and are independent of orientation preference. Interaction
strength exponentially decreases with increasing SF difference, and also the range of
interaction depends on SF. We were able to quantitatively reproduce the results of
psychophysical studies examining the effect of SF on contour integration [1, 2]. For
three different experimental paradigms, we show a comparison of model (solid lines) and
human psychometric curves (dashed lines) for contour detection in Fig. 1. Thus, we
can explain multiple SF-depending effects on contour integration by a simple unifying
principle: The more similar the preferred SFs of two neuronal populations, the stronger
they are connected. Different magnitudes of effects depending on ’low’ or ’high’ SFs
can be explained by a variable length scaling of the interactions. This mechanisms
that we suggest accounts for previously unexplained findings, helping to create a more
comprehensive understanding of computation in the visual system.

A: Contour defined by alignment only. B: Contour defined by SF shift only (between
contour and background). C: Contour defined by alignment, plus SF jitter on all Gabor
patches (light and dark blue). For jitter on contour elements only (red), the target
remains visible even for large tilt angles.
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In experimental studies of the animal’s brain, dynamics such as oscillation and synchrony
have been observed on the macroscopic scales [1]. It has also been suggested that these
macroscopic dynamics interact with microscopic dynamics of individual neurons and play
parts in brain functions such as learning and memory [2,3,4]. Randomly connected neural
networks have been studied numerically and theoretically for the modelling of dynamics
in the brain [5,6,7]. However, although there have been pioneering studies of dynamics
on multiple scales [8,9,10,11], most of theoretical analyses in previous studies have been
restricted to cases in which the neural networks exhibit relatively simple macroscopic
dynamics and the microscopic dynamics of individual neurons have only weak and
indirect interactions with the macroscopic dynamics. A comprehensive theory predicting
interplay of microscopic and macroscopic dynamics is therefore still missing. In the
present study, we numerically and theoretically investigate randomly connected neural
networks with precisely balanced strong excitation and inhibition. In these networks,
microscopic fluctuations of individual neurons serve as driving forces of macroscopic
dynamics while macroscopic dynamics largely constrain the microscopic fluctuations. As
a result of these interactions, the networks exhibit complicated macroscopic behaviours
such as intermittent transitions similar to UP-DOWN states [1], noise-induced oscillation,
stochastic resonance and amplification of extrinsic and intrinsic signals due to coherence
over the two different scales. A mean-field theory predicts these behaviours of the model
in good agreement with numerical results.
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Phase Amplitude Coupling (PAC) is a type of Cross-Frequency Coupling where the
phase of the low frequency signal modulates the amplitude of the high frequency. A
wide range of cognitive functions have been shown to be associated with PAC. However,
the mechanistic role and neural substructure of PAC in controlling the brain functions
are poorly known. Here, we develop a computational model to study the formation
of PAC in the neural system. Using a model that generates complex behaviors, we
set out to address if PAC appears near the critical point at which the system shows
optimal functionality. The neurons’ population in an all-to-all network with Leaky
Integrate-and-Fire Model (LIFM) dynamics is considered, and their interaction efficacy
is quantified by a control parameter, K. when a neuron fires, it jumps back to its resting
potential (zero). As the result of neural interaction, the potential of neurons connected
to it make a step ahead if K is positive or backward if K is negative. Changing the
control parameters results in different behaviors of the model and the critical point
is obtained in a specific control parameter where there is power low behavior in the
network. Our model generated low (<20 Hz) and high (30-80 Hz) frequency oscillatory
activities intrinsically through constant input. Our results indicate that PAC occurs
when the network enters the criticality state, suggesting a tight association between
them.
This is the first cue to our knowledge that PAC occurs at the criticality state of the
neural network, which helps to better understand the role of PAC in brain. Furthermore,
while in previous models an oscillatory input to the modeled network is deployed as a
modulating frequency component to generate PAC, our model uses no oscillatory input
to drive PAC. This makes our network more biologically plausible compared to other
models, since the neural tissue generated PAC regardless of its input. Also, the simplicity
of our model (in terms of both its architecture and number of control parameters) makes
it a perfect selection compared to many previous models used to model PAC generation.
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A smooth layout of orientation domains is a hallmark of the functional architecture of
mammalian visual cortex. It has been shown that these coherent layouts have developed
independently at least twice in evolution with quantitatively indistinguishable layout
rules arguably implying a strong functional benefit. However, the rules that underlie the
formation of these coherent representations within developing cortical circuits remains
poorly understood. We propose that correlated spontaneous activity in the developing
cortex could be used to establish networks of spatially distributed, but functionally
co-tuned neurons that are later evident in the mature cortex. To investigate this
possibility, we recorded neural activity in layer 2/3 in the developing ferret visual cortex
using in vivo wide-field and 2-photon calcium imaging. Prior to eye-opening and the
emergence of orientation maps, we find that spontaneous activity patterns and activity
patterns evoked by drifting gratings already exhibit remarkably widespread and specific
modular correlation patterns. Furthermore, we show that the spatial layout of evoked
and spontaneous activity patterns is highly similar on both a fine-spatial scale and
across large ranges (>1mm), suggesting an already well-defined functional architecture
constraining the possible activity patterns. Using Principal Component Analysis, we
find that the spatial organization of both evoked and spontaneous activity patterns are
both highly similar and the population responses reflect overlapping subspaces. But
as orientation maps begin to emerge, evoked activity patterns become less diverse and
form a subspace contained within the larger space of spontaneous activity patterns.
Thus, we conclude that early grating evoked responses are largely drawn from a pool of
possible network patterns already evident in spontaneous activity, but as the orientation
map develops, only a reduced set of activity patterns becomes associated with stimulus
orientation. These results suggest that early activity patterns in the developing cortex
may provide a scaffold for orientation map development.
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During the last years the connectivity of neural networks has become one of the foci
of research in both experimental and theoretical neurosciences. Approaches towards
elucidating the “connectome” include: (i) anatomical studies, which trace neurites and
identify their synaptic connections to neurites of other neurons, (ii) dual and multiple
recordings, where neurons are stimulated and the responses of other neurons are directly
measured, and (iii) network reconstructions from measured neural activity. Here, we
present an approach belonging to the third class. We use a simple spiking “student”
network that adapts its synaptic strengths and neural thresholds to match the activity of
a recorded recurrent “teacher” network. The current goal of our work is to reconstruct
simulated spiking model networks. Future work shall use experimentally recorded spike
trains to reconstruct biological networks. The considered teacher networks consist of
recurrently connected leaky integrate-and-fire neurons with optional external constant
drive and input spikes. The student networks have the same general structure. They are
initialized with random weights and thresholds and adapt them according to supervised
Finite Precision Learning [1] to match the spiking activity of the teacher. We investigate
the conditions that allow a faithful unique reconstruction of the teacher’s recurrent
network connectivity and their relation to the reconstruction of single neuron connectivity
and the storage capacity of recurrent spiking neural networks. We apply both Recurrent
Network and Single Neuron Finite Precision Learning, compare their performance and
assess their feasibility for the reconstruction of biological networks.
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Neural ensembles are a strongly interconnected group of neurons activated by a sequential
order of firing (Hebb 1949). However, even when this concept was proposed more than
60 years ago, only recently, the simultaneous recordings and analysis from hundreds of
cells has turn to be possible. Moreover, most of the effort for understanding neuronal
ensembles have been devoted, so far, to the cortex (Carrillo-Reid et al., 2015; Montijin
et al., 2016). However, at our knowledge, little is known about their presence and
function at the level of the retina, an accesible part of the central nervous system
that communicate directly to the brain. Here we use both a multi-electrode array
technique (USB-256 electrodes) for the recording of retinal ganglion cells (RGC) from
a diurnal rodent and computational tools (e.g. Carrillo-Reid et al., 2015) to search
for the presence and characteristics of retinal neural ensembles under differents light
conditions: i) spontaneous in dark; ii) full field light stimulation; iii) white noise; iv)
natural movie. After we validated our computational tools using synthetic data, we had
carried a preliminary assessment to identify the occurrence of neural ensembles in the
retina of Octodon degus, a diurnal rodent model for aging and neurodegeneration. A
preliminary analysis from 270 recorded RGC under a repeated short natural movie as
stimulus suggests (Figure 1) the presence of 10 different synchronic neural ensembles. In
the Figure 1 A: shows the raster for the 270 RGC under the repeated natural movie (30s
per trial); B: population rate and threshold for significant synchronous activity (P<0.01);
C: neural ensembles temporal activity (color represent different neural ensembles); D:
spatial distribution of detected neural ensembles (color coding similar to C and Non
core Cells). The bin used here was 20 ms to favor fast integratiob, however spike timing
will also depend on the stimulus nature. In agreement with previous work in the mouse
cortex, we found that the number of neural ensembles doesn’t significant differ between
spontaneous and light evoked conditions . Our results suggest the presence of retinal
neural ensembles structures that can be part of a mechanism of population coding. The
complete characterisation and understanding of retinal neural ensembles need yet to be
establish.
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Examples of retinal neural ensembles using a natural movie stimulus.

Acknowledgements
Financial support: FONDECYT 1150638, ICM-P09-022-F Millennium Scientific Initiative of the Ministerio
de Economia, Desarrollo y Turismo (Chile); ONR Research Grant # N62909-14-1-N121. Thanks to
members of the lab for help in the retinal experiments.

References
1 Hebb, D. O. (1949). The organization of behavior: A neuropsychological theory. Wiley Press.
2 Montijn J.S., Olcese U., Pennartz C. M. A. Visual stimulus detection correlates with the consistency

of temporal sequences within stereotyped events of V1 neuronal population activity, Journal of
Neuroscience 17 August 2016, 36 (33) 8624-8640 10.1523/JNEUROSCI.0853-16.2016

3 Carrillo-Reid L., Miller J. K., Hamm J. P., Jackson J., Yuste R. Endogenous sequential cor-
tical activity evoked by visual stimuli. The Journal of Neuroscience. 2015;35(23):8813-8828
10.1523/JNEUROSCI.5214-14.2015

©(2017) Herzog R, Mora S, Palacios AG
Cite as: Herzog R, Mora S, Palacios AG (2017) On the Search of Retinal Neural Ensembles. Bernstein
Conference 2017 Abstract. doi: 10.12751/nncn.bc2017.0086

[W 68] Axonal potassium channels shape the dynamic gain
Bo Hu1, Fred Wolf2, Andreas Neef2

1. Heidelberg University, Heidelberg, Germany
2. Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17 37077 Göttingen, Germany

The dynamic gain of a neuron describes how precisely its action potentials are locked to
the time course of a fluctuating input. This determines the neurons capacity to encode
information about the input. The dynamic gain is shaped by the voltage dependence
of sodium channels (Fourcaud-Trocme et al. 2003). This dependence is intuitive, as
it is sodium channels that govern the initiation of action potentials. However, the
experimentally observed dynamic gain is not readily accounted for by the biophysical
properties of sodium channels (Naundorf et al. 2005, 2006).
We use a simple multi-compartment neuron model to study the influence of axonal
potassium channels on the neuronal transfer function. In each model, with or without
potassium channels, the dynamic gain is obtained in a noise driven regime. The average
and the standard deviation of the fluctuating input is chosen to obtain a fixed firing
rate and spike statistics (standard deviation of inter-spike-intervals) across models. We
find that contrary to simple intuition, the addition of a hyperpolarizing potassium
conductance can increase the speed of depolarization away from a fixed point into the
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action potential. This is mirrored in an increased bandwidth of the dynamic gain, i.e.
an increased cut-off frequency. Potassium channels also introduce a sensitivity for the
correlation time of the input. The dynamic gain is increased at intermediate frequencies,
if the correlation time is larger, on the order of the activation time constant of the
potassium channels.
These results indicate, that the experimentally observed large cut-off frequencies of
a few hundred Hertz, as well as the observed sensitivity to the input correlation time
might rely on the activation of potassium channels. This introduces the possibility that
physiological modulation can dynamically tune the dynamic gain through pathways such
as muscarinic innervation that leads to closure of axonal potassium currents.
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Much of studies on neural computation are based on network models of static neurons
that produce analog output, despite the fact that information processing in the brain
is predominantly carried out by dynamic neurons that produce discrete pulses called
spikes. Research in spike-based computation has been impeded by the lack of efficient
supervised learning algorithm for spiking networks. Here, we present a gradient descent
method for optimizing spiking network models by introducing a differentiable formulation
of spiking networks and deriving the exact gradient calculation. For demonstration, we
trained recurrent spiking networks on two dynamic tasks: one that requires optimizing
fast (≈ millisecond) spike-based interactions for efficient encoding of information, and
a delayed-memory XOR task over extended duration (≈ second). The results show
that our method indeed optimizes the spiking network dynamics on the time scale
of individual spikes as well as the behavioral time scales. In conclusion, our result
offers a general purpose supervised learning algorithm for spiking neural networks, thus
advancing further investigations on spike-based computation.
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Population activity patterns recorded in the hippocampus in vivo include theta-modulated
gamma oscillations and sharp wave-ripple (SWR) events. During SWRs, neuronal
populations in the hippocampus “replay” activity recorded during theta-gamma activity
in the exploring animal. Our aim was to develop a mechanistic understanding of cellular
and network mechanisms underlying the generation of SWRs, sequence replay during
SWRs, and the observed switching to other types of population dynamics such as gamma
oscillations. We built a large-scale network model of area CA3 of the hippocampus,
and set single-cell and synaptic parameters according to in vitro data. When we used
uniform or randomly varying synaptic conductances for all types of connection, there
was no sequential activity, and sharp waves with moderate pyramidal cell firing rates
and accompanying ripple oscillations were never observed. When recurrent excitatory
weights were set by applying an additive spike timing-dependent plasticity (STDP)
rule during simulated runs in a circular maze, sharp wave-like activity with ripple
oscillations, physiological rates, and accelerated sequential replay of learned activity
patterns emerged spontaneously. All of these features of neural activity were robust
to scaling the synaptic conductances in a relatively broad range. Application of the
recently described symmetric STDP rule enabled both forward and reverse replay as
seen experimentally. We then used systematic perturbations of the synaptic weight
matrix to explore the links between these different aspects of the neural dynamics and
the underlying functional connectivity. After shuffling the weights of individual neurons,
sequential activity disappeared, and neither moderate rates nor ripple oscillations could be
robustly maintained. On the other hand, binarizing the weights by replacing the strongest
weights by their average, and the rest of the weights by their average, did not lead to any
fundamental change in the dynamics. These results demonstrate that the distribution
of synaptic weights is neither necessary nor sufficient for the physiological activity of
the original network. Manipulations which destroyed embedded convergent paths in the
weight matrix invariably led to the disappearance of both sequential activity patterns
and SWR population dynamics, demonstrating a fundamental link between temporal
representations (coding) and population dynamics in structured cortical networks.
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A variety of neural systems in different species generate neuronal avalanches: bursts of
network activity that have a power-law size distribution [1]. An individual avalanche
may involve any number of neurons, from one to the entire network; avalanches of all
sizes occur with non-negligible frequency. Such behavior is typical for critical systems,
that is systems at the transition point between two states with qualitatively different
characteristic scales of activity. A possible explanation for the occurrence of neuronal
avalanches is that the underlying networks organize themselves into the critical state
(self-organized criticality [2]). Here we propose a simple spiking model for developing
neural networks. It shows how networks may “grow into” the critical state during
development. The network growth and spiking dynamics are adapted from established
models: Neurons are inhomogeneous, coupled Poisson processes without refractoriness
(for a static network: Hawkes processes) [3, 4]. The extents of neurites are represented
by discs, with synaptic coupling strengths proportional to the discs’ overlap. Inputs
increase the Poisson spike rate of a neuron. Neurites grow if a neuron is silent and shrink
when spikes are generated [5 - 7]. Both processes balance at some spike rate, such that
the network becomes stationary. Our analysis and numerical simulations show that the
larger the stationary state’s spike rate is compared to the spontaneous spike rate of
isolated neurons, the nearer the stationary network is to the critical point. The avalanche
size distribution approaches a power law distribution with exponent -3/2. We also derive
the avalanche duration distribution analytically and show that its tail approaches a power
law with exponent -2. Both exponents have been reported in experiments. Refractoriness
of neurons can be included, but makes analytical considerations difficult and tends
to render the system subcritical. Our model can be viewed as a self-exciting Hawkes
process with exponential kernel, a process frequently used in life sciences, finance and
social sciences to model clustering phenomena. Our derivation of the avalanche duration
distribution may prove useful in these fields to analytically describe the durations of
phenomena such as criminal gang violence, corporate defaults and disease outbreaks.
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Retinal waves are spontaneous bursts of activity propagating in the developing retina and
playing a central role in shaping the visual system. They appear early in development
and gradually disappear upon maturation. They are classified in 3 consecutive stages
(I,II,III), mainly characterized by different synaptic transmissions and transient networks
of specific cells [1]. However, in order to elucidate the dominant mechanisms shaping
retinal waves within a specific time window of maturation, as well as the transition
between them, it is important to investigate the continuous variations of biophysical
characteristics due to development within each stage. Focusing on stage II, we propose
a biophysical model, grounded on experiments, and accessible to dynamical systems
analysis, featuring a network of cholinergic-coupled Starburst Amacrine Cells (SAC) with
a calcium-controlled slow After HyperPolarization current (sAHP) [2]. In agreement with
biophysics SACs burst spontaneously and their interaction via acetylcholine gives rise to
waves. A bifurcation analysis exhibits 3 key biophysical parameters having a big impact
on SACs spatiotemporal activity: the fast K+ conductance, the acetylcholine synaptic
strength (varies upon maturation), and the rest potential (varies upon pharmacology).
This analysis leads us to reproduce a bench of experimental results [3]. It allows us
to explain the wide variability in interwave intervals observed across species with a
unique generic mechanism (figure not shown). More generally, the nonlinear dynamics
generates heterogeneous local spatial structures inside which retinal waves propagate
(Fig 1B). This induces a wide variability in waves characteristics (size, duration) even
though our network is perfectly homogeneous. Therefore, we show that although
variability is de facto present in biological systems, it is not necessary to explain the
appearance of spatial structures and waves, as well as their variability (Fig 1). We
analyze how the evolution of cholinergic conductance due to the maturation of nicotinic
receptors dramatically changes the retinal wave characteristics. Especially, there is a
very narrow interval of acetylcholine conductance where retinal waves size obey a power
law distribution, reported first also in [4], suggesting a specific (homeostatic) mechanism
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stabilizing temporarily the SACs network in this specific range. Finally, we discuss several
experimental predictions of our model.

A. Average population firing rate exhibits a sharp transition when varying the cholinergic
conductance gA. B. Heat map of the average bursting period T (sec) of the network
showing patterns where waves do emerge (red) and where they do not (blue). C.
Evolution of the patterns when increasing gA.
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The membrane potentials of neurons propagate across electric synapses without direction-
ality, threshold, and time delay in contrast to chemical synapses. Several experimental
evidences and computational models have shown that electrical synapses are required to
implement not only the movement of the subthreshold oscillation but also the emergence
of both the rhythmicity in the global neural network and the spiking synchrony in the
mammalian interneurons. How the complex network of neurons executes the simultane-
ous and coherent propagation of neuronal signals is the center of fundamental issues
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in Connectomics, yet is still far away from our systematic understanding theoretically
and computationally. Also there are still debates on another issue, called ‘Dynamic
routing’; how the outgoing signal of the sensory-neurons, regulated by the modulation
of firing-frequency, chooses the specific propagating path in various possible ways while
the synaptic network is comparatively static.
In this work, we aim to suggest a physical mechanism on how ‘Dynamic routing’ operates
with the propagation of coherent membrane potential oscillations in complex network of
electrical synapses. Provided that the coherence length of oscillatory signals is longer
than our system size, we employed the quantum mechanical formulation in order to
describe the propagation of the subthreshold membrane potential across the complex
network of electrical synapses with oscillatory incoming/outgoing signals. We could
envisage the interference effect of all possible paths between input and output neurons,
and investigated the propagation of coherent oscillatory signals among neurons in the
complex network. We demonstrated the existence of allowed or forbidden propagation
and the dynamic modulation of the propagation path depending on the wave-number
of oscillatory signals in both the virtual network formed like square lattice and the real
electrical synaptic network of C. elegans.
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To investigate the complex dynamics of a biological neuron that is subject to small
random perturbations we can use Ito diffusion processes as stochastic neuron models:

dV σ(t) = [−g(t)V σ(t) + I(t)] dt+
√
σdW (t)

While many techniques have already been developed to study properties of such models
[1], especially the analysis of the first-passage time (FPT) distribution Tσ = inf(t >
0, V σ(t) ≥ Vth > V0) remains difficult. In this work I apply the large deviation theory
(LDT), which is already well-established in physics and finance [2], to the problem of
determining asymptotic estimates of exit times of the mean-reverting Ornstein-Uhlenbeck
(OU) process in the small noise limit σ → 0. The OU process instantiates the Stochastic
Leaky Integrate and Fire (SLIF) model and thus serves as an example of a biologically
inspired mathematical neuron model. Taking the seminal work of Paninski [3] as a
starting point, I extend his results on FPT densities to time-inhomogeneous models and I
provide explicit LDT approximations for interesting examples like the model proposed by
Stevens & Zador [4]. Among the results is a LDT argument for when stochastic neuron
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models can be approximated by Poisson processes , a Laplace approximation of the
Siegert formula and a connection to extreme value theory and the Fréchet distribution
(compare [5], [6] and [7]). Finally I performed several simulations to verify and to reveal
systematic biases of these results.

An example of a time-dependent conductances is g(t) = a
1+bt

+ c which introduces a
relative refractory period into the model. Left: LDT prediction of the FPT density
for varying values of σ. Right: Numerical simulation of the same density. Note the
different scalings of the x axes.
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Cognitive functions arise through the coordinated activity between many interconnected
brain regions and are thought to be implemented in terms of the stochastic and
dynamical properties of the underlying network (Izhikevich, 2007). For example, non-
linearly connected networks foster a multitude of stochastic dynamical phenomena such
as multi-stability and attractor-hopping, giving rise to cognitive computations related to
memory and decision making. By adjusting their internal connections, neural networks
may further change their dynamical properties over time, enabling adaptive behavior
and learning. Reconstructing stochastic network dynamics from neural time series is
therefore highly compelling to advance our understanding of cognitive mechanisms,
and could benefit research particularly in the context of psychiatric disorders. From
this perspective, psychiatric symptoms and cognitive dysfunctions may be rooted in
changes of the underlying dynamical system properties, and the inability to successfully
adapt these properties in a given context or during learning. One prominent approach
to the reconstruction of stochastic network dynamics from experimental recordings is
the use of state space models (SSMs) (see e.g. Smith & Brown, 2003). SSMs treat
the often high-dimensional noisy experimental recordings, such as may be obtained
from electrophysiology or neuroimaging techniques, as being generated by an underlying
(usually much lower dimensional) latent dynamical system subject to process noise. In
this way, they may yield essential and compact information about the underlying system’s
trajectories as well as its governing dynamics. However, so far only few of the proposed
models capture non-linear dynamics, essential to emulate many crucial dynamical
phenomena related to cognition, and hardly any models capture non-stationary processes
which are key to learning and adaptive behavior. Building on a previous model developed
in our group (Durstewitz, 2017), here we advance a piecewise linear state space model
with non-stationary latent process designed to assess dynamics from functional magnetic
resonance imaging (fMRI) recordings, and thus directly applicable to psychiatric data
sets. We test the model on fMRI data obtained during a Working Memory (WM) task,
and show how the model is capable of capturing meaningful task-related information
in its state trajectories, as well as accounting for behavioral variability in its governing
dynamics.
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[W 76] Connectivity regimes of the stabilized supralinear network
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The neural circuits perform many nonlinear computations such as sub- and superlinear
summation of inputs, memory storage and oscillations. All these fundamental compu-
tations are thought to be generated by nonlinear interactions in recurrently connected
networks of excitatory and inhibitory neurons. Therefore, it is plausible to assume
that a single recurrent network model could reproduce many of these computations.
In the presented work we consider a 2D stabilized supralinear network (SSN) model
[1,2]. Recently the SSN model has been shown to reproduce a variety of nonlinear
computations such as normalization, surround suppression [3] and stimulus induced
variability suppression [4]. In its simplest form the SSN model is a set of two coupled
nonlinear differential equations that describe the activity of excitatory and inhibitory
populations. The positive constants JEE , JEI , JIE and JII represent the strength of
synaptic connections between the populations, gE and gI are constant inputs to the
populations and the activation function of the populations is captured by the power-law
with the exponent n ≥ 2, Fig. 1. The power-law activation function is motivated by
the experimental studies [5] as well as theoretical evidence showing that the power-law
is the only function consistent with contrast invariance [6,7]. Even though the SSN is
one of the simplest nonlinear network models, it turns out few methods are available to
systematically predict what type of steady state solutions to expect for all connectivity
matrices and inputs to the network.
We present a new method that allows to map 2D steady states of the SSN model to
the zero crossings of a 1D characteristic function. This method allowed us to derive a
number of new computational insights. First, we have shown that at most two stable
steady states can coexist in the SSN model and derived corresponding connectivity and
input constants. Second, we have outlined exact connectivity and time scale regimes for
the emergence of a persistent state in the SSN model. Third, we have proven that the
SSN model can undergo a Hopf bifurcation and lead to stable oscillatory attractors.

Circuit architecture and neural current-to-firing rate transformation.
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Transcranial brain stimulation and evidence of ephaptic coupling have sparked strong
interests in understanding the effects of weak electric fields on the dynamics of neuronal
populations. While subthreshold effects in single neurons can be explained using
multi-compartment models or the cable equation, these models are not well suited for
mechanistic analyses of modulation effects in neuronal spiking and network activity.
Here, we employ a two-compartment integrate-and-fire neuron model that accounts
for an applied or self-generated extracellular field. We first efficiently calibrate its
parameters via the cable equation to describe the dynamics of pyramidal neurons. Using
the Fokker-Planck equation and a moment closure dimension reduction method we
then derive analytical results for the spike rate dynamics of (i) single neurons subject to
fluctuating inputs, and (ii) a sparsely coupled two-population network. We show that
applied oscillatory weak fields, which effectively mimic anticorrelated inputs at the soma
and dendrite, strongly modulate neuronal spiking activity in a narrow frequency band.
Self-generated fields also promote spike rate resonance in the same frequency band,
but their effect is much weaker. The effect of an applied field carries over to coupled
populations of pyramidal cells and inhibitory interneurons, boosting network-induced
resonance in the beta and gamma frequency bands. This work provides insights on how
extracellular electric fields modulate neuronal spiking activity due to the morphology of
pyramidal cells, and contributes a useful theoretical framework to analyze their spiking
dynamics.
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Since Adrian’s work in 1928 [1], it is widely accepted that neuronal fi
ring rates contain a signifi
cant amount of information about external stimulation. As neurons fi
re spikes irregularly, it is usual to determine their fi
ring rate by counting the number of spikes in a predefined time window [2]. Nevertheless,
the accuracy of rate coding is only rarely inferred from exact spike counts. In our recent
work [3], we analysed the distribution of the counts of spikes from a single neuron
assuming the stochastic perfect integrate-and-fire model. The main aim of our analysis
was to evaluate the maximum possible accuracy of decoding based on observed counts
of spikes using the Fisher information about the stimulus intensity, which is a common
measure of ultimate decoding accuracy [4].
We investigated effects of several aspects of the neuronal model, especially the influence
of the time window duration. Intuitively, one would expect that a longer time window
must result in an estimate of the stimulus intensity that has at least the same or better
quality. By contrast, our results show that the Fisher information is nonmonotonic with
respect to the length of the observation period, which means that extending the time
window might in some cases deteriorate the decoding accuracy. We demonstrate that
this phenomenon is caused by the discrete nature of the count of spikes, which also
suggests that similar results might be obtained for other neuronal models.
Besides the time window duration, we also investigated the role of the presynaptic
spontaneous activity. It may also affect the decoding accuracy in a nontrivial way. In
a situation when shortening the time window would lower the decoding accuracy, an
increased level of spontaneous activity may partially reduce this loss.
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Networks containing a huge number of neurons and synapses confer the brain an immense
computational capability. Learning how activity propagates in these intricate networks
would help us understand how information is globally integrated. This communication
is determined by the structural connections (wiring diagram) linking the different nodes
in the network and their functional interaction. These interactions are highly dynamic
processes that mostly relay on changes in synaptic efficacy and the differential recruitment
of excitatory and inhibitory elements. The combination of both factors determines
the effective connectivity of the system in a particular state. Here we have used a
computational model and causality measurements to study activity propagation in the
hippocampal formation, a brain region critical for the formation of episodic memories.
It is composed by the hippocampus proper (areas CA1 and CA3), the dentate gyrus
(DG) and the entorhinal cortex (EC). While extensive literature on the connectivity of
the first regions exists, the connectivity of the EC remains poorly investigated.
To better understand how the internal structure of EC affects the causality in the
hippocampal formation, we implemented a model containing all the above areas. We
assumed the EC was formed by 3 layers (II, III and V). We fixed all connections in
the model between DG, CA3 and CA1, while the EC connectivity was systematically
varied. The causality was estimated using Granger Causality (GC) and Partial Transfer
Entropy (PTE). For these measurements, we assumed that only information from DG,
CA3 and CA1 was available. We also introduced interneurons in our circuit, considering
inhibitory projections from CA1 to CA3. With this new ingredient, we addressed different
“causality” measures, such as information flow and synchronization between populations,
respectively.
Our procedure revealed that different EC internal connectivity patterns give rise to
very distinct causality results in the hippocampus, despite its fixed connectivity. More-
over, different results were obtained for the two methods (GC, PTE), highlighting
the importance of the analysis and revealing potential misinterpretations when only
partial information is available. Our method allowed us to analyze the differences of
causality when excitatory and inhibitory projections are considered and identified the
most probable EC configuration to explain the known connectivity between the DG,
CA3 and CA1.
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We study the dynamical properties of inhibitorily coupled networks of integrate-and-
fire neurons with infinitesimally short synaptic currents. In addition to conventional
leaky integrate-and-fire neurons with positive dissipation, the networks contain neurons
where the sign of the leak current is switched, leading to negative dissipation. Such
mixed networks can exhibit a balanced state of asynchronous irregular spiking activity,
independent of the proportions of the two neuron types.
Although the balanced state appears similarly in many different neural network models,
its dynamical properties such as chaoticity can vary considerably. In particular, inhibitory
networks consisting of integrate-and-fire neurons with positive dissipation and infinitesi-
mally short synaptic currents are stable, non-chaotic despite their irregular dynamics.
This property is robust against introducing a number of excitatory connections. Here
we show that introducing a single neuron with negative dissipation already renders the
network dynamics unstable. For this we compute the largest Lyapunov exponent, which
measures the exponential growth rate of generic small perturbations.
To further characterize the dynamics we consider the full spectrum of Lyapunov ex-
ponents, which describes the rates of growth or shrinkage of small perturbations in
different directions of phase space. Interestingly, the number of negative (positive)
Lyapunov exponents approximately equals the number of neurons with positive (negative)
dissipation. We analytically explain this using a mean-field approach for the growth
or shrinkage of perturbations of the individual neurons: the effect of inhibitory input
from the network reduces to increasing the time between the resets of the neurons;
this already results in nonzero perturbation growth rates, which reasonably approximate
large parts of the Lyapunov spectrum.
The mean field approach raises the question whether single neuron perturbations are
perturbations that grow according to a single Lyapunov exponent. The precise directions
for the latter are given by the covariant Lyapunov vectors, which specify in particular
the directions of the stable and unstable manifolds of a trajectory. It turns out that the
Lyapunov vectors consist of mixtures of perturbations to different neurons. We also
compute the Lyapunov vectors of small mixed networks, where their directions can be
predicted and interpreted in terms of the network architecture.
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Non-invasive brain machine interfaces (BMIs) on motor imagery movements have been
widely studied and used for many years to take advantage of the intuitive link between
imagined motor tasks and natural actions. This type of BMI has been widely used as
an alternate mode of communication and environmental control for the disabled, such
as patients suffering from amyotrophic lateral sclerosis, brainstem stroke and spinal
cord injury [1]. Together with recent advancements in neuromorphic computing, which
allow real-time and low power implementations of large scale spiking models for data
processing, BMI applications could profit from this symbiosis [2].
Taking inspiration from the architecture of the olfactory system of insects [3], we
advance and implement a spiking neural network model to decode and predict imaginary
movements from EEG signals. The network runs on SpiNNaker, a neuromorphic hardware
platform containing 4 chips with 64 cores. Our work provides a proof of concept for a
successful implementation of a functional spiking neural network (SNN) for decoding two
motor imagery (MI) movements on the SpiNNaker system. With a mean accuracy of
75%, SNN presents a valid alternative to classical machine learning algorithms deployed
in BMIs. This approach can be extended in the future to classify more complex MI
movements on larger SpiNNaker systems.
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Many tasks in nature and robotics require orientation and self-localization within the
environment. Fast and reliable depth perception plays a crucial role in these tasks. A
prominent solution nature has found to estimate distances is stereo vision. Here, we
propose a neural network implementation of a cooperative stereo matching network[1]
on TrueNorth[2] using dynamic vision sensors (DVS,[3]) to solve the depth estimation
problem for robots. TrueNorth is a neuromorphic chip that comprises one million
silicon neurons to facilitate massively parallel computation in large neural nets, while
DVS were inspired by mammal eyes and work analogously to retinal ganglion cells.
Using these bio-inspired technologies we overcome the main limiting factors of current
stereo computation: high-latency frame-based cameras and computationally costly
data-processing in a sequential way on standard computers. The network’s architecture
is based on a network developed for SpiNNaker[4] and the purpose of the network is
to estimate depth information using event-based vision streams from a stereo rig of
two DVS. The use of TrueNorth allows to leverage currently unmatched capability of
low power-consuming real-time processing of large neural networks letting the incoming
vision information be processed fast and with low latency. In order to let the DVS
communicate directly with TrueNorth, a software interface to stream live DVS data to
the chip was developed.
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One of the greatest feats in human cognition is the ability to rapidly acquire new
information. A prominent example of this ability is manifested during learning to identify
new objects, even after single trial exposures. The neural mechanisms subserving
this behavior, however, are largely unknown. Here, we studied neuronal responses
to instances of single shot learning using Mooney images. Mooney images render
objects in binary black and white in such a way that they can be extremely difficult to
recognize. After exposure to the corresponding grayscale image, it becomes significantly
easier to recognize the objects in the original Mooney image. We recorded single unit
responses in the human brain, mostly from the medial temporal lobe, from 13 epilepsy
patients implanted with electrodes for clinical purposes [1]. The experiment began
with presentation of Mooney images. Subjects learned the identity of these initially
unrecognized Mooney images via paired viewing of their grayscale counterparts. Finally,
the Mooney images were presented again alone. We compared the neuronal responses
of 1118 unit clusters in response to three main conditions: (i) Mooney images that were
not recognized (preGS), (ii) identical Mooney images that were recognized (postGS)
and (iii) corresponding grayscale images (GS). About 20% of them showed significant
modulation of firing rates computed in the 0-500 ms interval across conditions. Of
those units, 12% showed firing rate modulation dependent on changes in recognition
with similar responses to postGS and GS and different responses to preGS and postGS.
Additionally, 32% of those units showed similar responses to preGS and postGS and
different responses to GS and postGS. These results demonstrate a single unit signature of
rapid learning in the human medial temporal lobe and provide initial steps to understand
the mechanisms by which top-down inputs can rapidly orchestrate plastic changes in
neuronal circuitry. Looking in detail at the neuronal responses for different image motifs
shows the complexity of these mechanisms: For one motif a certain neuron may show
different responses when comparing grey to black/white image format, with similar
preGS and postGS responses. For another motif the same neuron may show different
responses when comparing preGS to postGS black/white image format, with similar
grey and postGS responses. And for a third motif all three conditions may elicit similar
responses in this neuron.

(A) Sample Mooney (top) and grayscale (bottom) stimuli. (B) unit with responses
modulated by recognition. GS and postGS condition show similar, preGS different
(lower) firing rates. (C) unit with responses modulated by stimulus format: preGS
and postGS similar, GS different (higher) firing rates.
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It is well known that retinal ganglion cell response properties vary with changes in
ambient light [1]. For example, a cell that behaves as an ON cell at one luminance
level might behave as an OFF cell at another [1,2]. However, the consequences of these
changes for information processing in the retina are still largely unknown. Here, we
investigated how retinal ganglion cell response type changes due to different ambient
luminance levels are related to stimulus information carried by these cells. We used
multi electrode arrays to record spiking activity from a total of 86 ganglion cells of
two isolated mouse retinas during visual stimulation. Our visual stimuli consisted of
homogeneous contrast steps of positive and negative contrast at different ambient light
levels, covering the scotopic (dark) to mesopic (bright) regimes. To quantify information
carried by the ganglion cell responses, we first applied temporal non-negative matrix
factorization (temporal NMF) to decompose each retinal ganglion cell’s spike trains
into a set of trial-independent non-negative temporal firing patterns and trial-dependent
non-negative activation coefficients that represent the strength of temporal firing profiles
within a given trial. This factorization yielded a robust low-dimensional representation
of the neural responses that captures efficiently a ganglion cell’s temporal information
[3]. We then decoded stimuli from this low-dimensional representation using multi class
linear discriminant analysis (LDA) and used cross-validated decoding performance to
estimate mutual information between stimuli and spike trains. Confirming earlier studies
[1], we found that a significant number of retinal ganglion cells changed their response
type when the ambient light level changed from scotopic to mesopic. Our quantification
of stimulus information showed that ganglion cells that kept their response type carried
significantly more stimulus information than ganglion cells that changed their response
type from scotopic to mesopic vision. Moreover, we found that ganglion cells that clearly
behave as ON or OFF cells in at least one ambient light level carried significantly more
information than cells without a clear type in any of the ambient light levels (Fig 1).
Our results suggest that ambient luminance dependent response type changes cannot
be attributed to efficient coding at the single-cell level but do not exclude the possibility
that these type changes aid population codes.
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Information carried by retinal ganglion cells with different types. Comparison of
stimulus information encoded by cells with fixed response type (either ON or OFF)
with stimulus information encoded by cells that have an ambient luminance dependent
or no clear type in scotopic and mesopic vision.
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Rodents are emerging as interesting models to study the mammalian visual system,
mainly because of their accessibility to a wide range of experimental techniques. Yet, it
remains unclear to what extent rodent visual cortex is capable of supporting higher-order
visual functions typical of primate vision. Recent studies have shown that rats are able
to perform invariant visual object recognition [1], and that in rat lateral extrastriate
cortex low-level visual information is progressively discarded in favor of higher-order
information, while the representation of visual objects becomes more invariant [2]. In our
study we further investigate the nature and complexity of visual object representations
in rat primary visual cortex and lateral extrastriate areas. To this aim, we built a rich
stimulus set, consisting of 40 different objects (organized in a semantic hierarchy),
each presented under 36 different views (Fig. 1A). As a result, the stimuli spanned
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a wide range of low-level, mid-level, and high-level visual features. We recorded
neuronal responses from anesthetized animals passively exposed to the stimuli, and we
characterized the representation of the stimuli in the population vector space, using
a number of multivariate approaches such as dimensionality reduction and clustering
analysis [3-4]. In the latter case, the partitions resulting from clustering the objects’
neuronal representations were compared, using the normalized mutual information, to
stimulus categories based on several visual features. We also performed single neuron
analyses, computing the mutual information between the responses of single neurons
and different stimulus parameters [2]. Our results suggest that, in accordance with [2],
rat visual areas progressively discard low-level visual information. For instance, using
Principal Component Analysis it can be seen how, in low-level areas (V1, LM), the
first principal components correlate nicely with stimulus luminance and position, while
such correlation is lost in higher-level areas (LI, LL) (Fig. 1B and C, top). Similarly,
the matching between the clustering of the stimuli in the population vector space and
their binning along the luminance and position axes becomes gradually lower along the
areas’ progression (Fig. 1B and C, bottom). Taken together, these results reinforce the
attribution of rat lateral extrastriate areas to an object-processing pathway, where the
information about low-level visual properties is gradually pruned.

(A) Object samples taken from the stimulus set, and their underlying categorical
structure. (B and C) Top: scatter plot of the principal components of the stimuli
(parameter value is color-coded). Bottom: NMI between population clusters and
feature based categories for the different visual areas.
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The visual cortex is characterized by a hierarchical organization, which reflects the
compositional nature of natural stimuli. Hierarchical models of perception predict that
population codes in the visual system, including the primary visual cortex, integrate
bottom-up information about the stimulus with top-down feedback from downstream
areas, and this top-down influence conveys information about previously acquired
knowledge (Lee & Mumford, 2003). Furthermore, the magnitude of top-down effects
was shown to vary based on the presence of higher-order statistical structure in the
stimulus (Singer & Gray, 1995). While bottom-up influences have been characterized
by a multitude of studies, much less is known about the way top-down influences
shape population activity. Here we identify signatures of hierarchical computation in
the population activity of V1 and use this to predict stimulus structure dependence
of the fine structure of spike count correlations. To test the prediction that spike
count correlations are specific to stimuli and their variability is dependent on stimulus
structure, we recorded from the V1 of macaques while performing a visual attention task.
First, we showed that spike count correlation patterns evoked by natural images are
stimulus-specific. To achieve this, we developed contrastive rate matching to control for
the confounding effect of stimulus-specific firing rates on correlations. Second, for each
natural stimulus, we synthesized images that retained statistical structure corresponding
to the V1-level representation of visual input, a linear combination of oriented edges,
but lacked any higher-order structure. We demonstrated that spike count correlation
patterns are less similar to each other in response to different natural stimuli than
in response to different synthetic stimuli, indicating that the signature of hierarchical
computation is present in the co-activation structure of V1 populations. Third, we
synthesised stimuli retaining second-order structure between the edges corresponding to
a texture pattern, which is suggested to be represented in V2 by experimental results
(Freeman et al, 2013). In line with the predictions of hierarchical computations, we
showed that responses to synthetic textures showed more stimulus-specific spike count
correlations than responses to V1-level synthetic images. Our results provide evidence
that hierarchical computations account for the rich structure of spike count correlations
in V1.
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(a) Inferred distributions for a latent feature depend on the stimulus in a hierarchical
model of images. (b) Recorded spike count correlations are more specific in response
to natural images than to stimuli with no higher-level statistical structure.
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More than 30 types of retinal ganglion cell (RGC) represent parallel channels transmitting
different aspects of visual information from the retina to various parts in the brain.
Retinal output is most directly conveyed to the cortex via the retino-geniculo-cortical
pathway, comprised of RGCs, relay cells in the dorsolateral geniculate nucleus (dLGN)
of the thalamus, and the primary visual cortex (V1). It has long been known that this
pathway is not homogeneous but consists of parallel channels, each carrying specific
information. However, it is still debated which RGC types project to the dLGN and how
their output is transformed in the dLGN. Here, we characterized, in the mouse model,

126

http://dx.doi.org/10.1364/JOSAA.20.001434
http://dx.doi.org/0.1146/annurev.ne.18.030195.003011
http://dx.doi.org/10.1038/nn.3402
https://doi.org/10.12751/nncn.bc2017.0105


the functional properties of dLGN-projecting RGCs and assessed dLGN responses to the
same set of stimuli by extracting elementary weighted response components.
We selectively labelled and physiologically characterized dLGN-projecting RGCs by
injecting a Cre-expressing retrograde herpes simplex virus (HSV) into the dLGN of
a Cre/loxP reporter mouse line carrying the genetically-encoded calcium indicator
GCaMP6f. The transfection of RGC terminals enabled us to perform light-evoked
two-photon Ca2+ imaging selectively in dLGN-projecting RGCs. Visual stimuli matched
those in a previously published survey of mouse functional RGC types (Baden et al.,
2016) (frequency/contrast modulated full-field flicker, dense noise, moving bar). We
then assigned each dLGN-projecting cell to the best-matching RGC cluster based on the
correlation of the GCaMP6f mean deconvolved cell response to the deconvolved OGB-1
cluster mean. Our results showed that that a large number of RGC clusters had been
assigned dLGN-projecting RGCs.
In a separate set of experiments, we characterized the responses of dLGN neurons
to the same visual stimuli using in vivo extracellular multi-electrode recordings in the
dLGN of awake, head-fixed mice. We applied sparse non-negative matrix factorization
(NNMF) on the dLGN dataset to extract visual response features. The resulting features
contained a high degree of variability in contrast and frequency, and multiple features
were typically needed to reconstruct dLGN neuron responses.
In conclusion, this study provides a functional characterization of the population of
dLGN-projecting RGCs and dLGN neurons, suggesting that the precortical basis of vision
displays an unexpectedly rich functional diversity of retino-geniculate projections and
thalamic features.
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In the outer plexiform layer of the mouse retina, two types of cone photoreceptors
(cones) provide input to 13 types of cone bipolar cells (CBC). At this first synapse of the
visual system, one type of horizontal cells (HC) provides feedback and feedforward input
to cones and BCs, respectively. The full computational role of HCs is still unclear: First,
recent studies suggest that - in addition to providing lateral (global) feedback to cones -
HCs may also provide local, cone-specific feedback (Jackman et al., 2012, Chapot et
al., 2017). However, it is unclear how the signal is kept locally isolated in the large
HC dendritic tree. In addition, if and how HCs provide direct feedforward input to the
different BC types is unknown. To understand the connectivity of HCs with cones and
bipolar cells, we reconstructed the cone axon terminals as well as the dendritic trees of
three HCs in a serial block-face electron microscopy volume (Helmstaedter et al., 2013),
and quantified the contacts (Behrens et al, 2016). Horizontal cells contacted cones and
ON-CBCs with their distal varicosities in the invaginating cleft of the cone axon terminal.
In addition, HCs contacted ON- and OFF-CBCs with dendritic “thickenings”, short
segments of increased dendritic diameter (‘’bulbs”) on their main dendrites, suggesting
that horizontal cells contact CBCs in a separate synaptic strata in the outer plexiform
layer. To better understand the conditions under which local signaling is possible in HCs,
we built a biophysically realistic model of a HC dendritic branch based on the detailed
morphology and connectivity. The model contains AMPA-type glutamate receptors,
voltage-gated calcium and potassium channels, as well as intracellular calcium buffers
and pumps. Preliminary simulations suggest that distinct features of the morphological
structure of HCs support local processing as inputs from different cones remain well
isolated in the very fine dendritic tips just as in physiological measurements. As a next
step, we will use the model to explore the computational role of the “bulbs” and explore
the effect of active conductances commonly found in HCs for switching between local
and global information processing.
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The hypothalamic neuropeptide oxytocin (OT) exerts prominent pro-social effects [3]
and hence considered as potential drug for treatment of psychosocial diseases in human
patients [5]. Despite numerous publications focused on pro-social effects of OT, it is
still unknown how social interaction affects electrical activity of OT neurons.
Recent development of cell-type specific opto- [4] and pharmacogenetic [2] viral vectors
allows us to identify and manipulate OT neurons in freely moving rats. Using these
vectors combined with optoelectrode technique [1, 2] we recorded single OT neuron
activity in the paraventricular (PVN) in rat hypothalamus during rest, exploration, and
social interaction with unfamiliar conspecifics. Simultaneously we monitored animal
behavior by an automated video tracking system (Noldus EthoVision® XT) coupled to
recording of ultrasound vocalizations. Our results show that social interactions induce
an increase in theta rythmicity (4-10 Hz) and in firing rate of individual OT neurons
which correlates with the distance between interacting rats.
To dissect the sensory information modalities that preferably triggers OT neurons during
social interaction, we recorded their activity when the animals were only able either to
see, smell or hear each other. None of this sensory input was sufficient to trigger OT
neurons activity for itself. In order to measure the contribution of somatosensory inputs
to OT neurons activity in absence of other sensory inputs, we recorded OT cells response
to tactile stimulations (i.e. air-puffs) from anaesthetized rats in various regions of the
animal body. PSTH (peri-stimulus time histogram) analysis revealed an increase of OT
neurons spiking activity with a delay of 0.5-1 seconds from the onset of the stimulus.
In conclusion, the evaluation of intrinsic properties of OT neurons during social interaction
might help to dissect sensory pathways controlling OT neuron activity and opens
perspectives for translational studies of human psychosocial diseases.
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Psychophysical and physiological evidence suggests that cortical representation of sensory
information may rely on bistable assemblies that transition spontaneously between active
and inactive states [1-3]. Here we show that such a probabilistic population code belongs
to a class of codes known to support Bayesian inference [4-6], using Fisher information
to clarify whether response summation preserves or looses information. Typically, lossless
summation of non-identically distributed responses requires Poisson variability and
stable tuning [4-6]. A population of bistable assemblies satisfies both requirements and
also sums sensory signals over time. Simulations confirm that populations of bistable
assemblies perform continuous inference [7], in that they integrate sensory signals nearly
optimally over time. Moreover, given two (or more) such populations with disparate
tuning, performance is robust in the face of time-varying signal quality: when inference
is ’ignorant’ (as to instantaneous signal quality) performance is nearly as good as when
it is ’knowledgeable’ (as to signal quality) at each point in time.
In conclusion, we report a compelling functional rationale, in terms of optimal continuous
inference, for bistable assemblies with spontaneous transitions between active and inactive
states, as supported by recent experimental evidence [1-3].
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Cortical state modulates both background activity and stimulus driven responses in
cortical area. State-dependency of sensory responses has been frequently reported,
predominantly with a focus on spiking activity. Here, we investigated the link between
cortical state and stimulus evoked oscillations in the cortex. We recorded local field
potentials (LFP) from barrel cortex along with pre-frontal electroencephalogram (EEG)
while presenting brief whisker deflections under urethane anesthesia. Deflections were
delivered to a principal whisker using a piezoelectric device. Stimuli were centered at
neurometric threshold (0, 1/2T, T, 3/2T, and 2T) and were presented in a pseudorandom
order with 5second inter-stimulus interval. Cortical states were identified based on the
power of low to high-frequency components of EEG (referred to as the L/H ratio) $1.
Each trial was then classified as being in “synchronized” or “desynchronized” state based
on the L/H ratio at the time of stimulus. Short time Fourier transform (STFT) was
used to calculate time frequency domain of LFPs. We observed that cortical state
prominently modulated 7-12 Hz oscillations following the early response of the LFP in a
stimulus dependent manner; the power of 7-12 Hz components was significantly higher
in desynchronized state at 3/2T and 2T stimulus intensities. Moreover, we observed a
significant modulation in gamma range frequencies (30-80). Our results suggest that
post-stimulus oscillations may communicate information regarding the sensory input in
a state-dependent manner.
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The visual system of vertebrates is adept at extracting salient features of a visual scene
such as spatial orientations and motion direction. The retina is the first stage of visual
processing and targets brain areas including the superior colliculus. Here the visual scene
is represented by a set of overlapping, retinotopically organized feature maps. Orientation
selective neurons in the mouse superior colliculus form an inhomogeneous map where,
unlike in other visual areas, neurons with the same orientation selectivity cluster together
such that a single orientation is represented at each retinotopic location. However, the
topographical organization of other feature maps, and their relationship to each other
remains unknown. Using two-photon calcium imaging, we recorded the activity of neurons
spanning more than half of the superior colliculus, while simultaneously measuring their
receptive field and determining their orientation and direction selectivity. We found
that the preferred axis of motion of direction selective neurons is dependent on their
retinotopic position. When comparing preferred directions with orientation in the same
retinotopic location, direction selective neurons showed a strong preference for directions
of movement orthogonal to the preferred orientation of nearby orientation selective
neurons. These findings uncover a second inhomogeneous map accounting for motion
detection that can be superimposed with the pre-established spatial orientation map.
Such maps appear to underlie the structure of the superior colliculus, and understanding
their relationships will allow us to understand how the colliculus contributes to innate
visually guided orientating behaviours.
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Our labs have recently shown that adult PSD-95 knockout (KO) mice have 9x more
AMPA-silent synapses in the primary visual cortex (V1) than wildtype littermates (WT)
and retain a lifelong juvenile-like ocular dominance plasticity (Huang et al., 2015,
PNAS 112 (24): E3131-E3140). Together with the impaired synapse maturation
of layer 4 inputs to excitatory pyramidal cells in layers 2/3 these data raised the
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question how V1-neurons respond to visual stimuli in vivo. To this end, we used
extracellular multielectrode recordings to investigate response properties of neurons in
the binocular part of V1 of isoflurane-anesthetized PSD-95 KO and WT mice. Visual
stimuli consisted of moving sine wave gratings of 8 different orientations (2 directions
each) and seven spatial frequencies (0.05-0.32 cyles/degree), presented with 2 Hz
temporal frequency at full contrast (42.7 cd/m2 maximum luminance) to either the
ipsi- or contralateral eye. We recorded both evoked and spontaneous spike rates, and
quantified the orientation selectivity of the evoked responses (calculated as the orientation
selectivity index = OSI), the preferred spatial frequency, and preferred direction of all
recorded units. Two of the investigated response properties yielded significant differences
between WT and KO mice: Compared to the WT mice, PSD-95 KO mice showed
elevated response rates to contralaterally presented gratings of preferred orientation and
spatial frequency (mean±SEM: WT=26±2 spikes/sec, KO=38±4 sp/s, Man Whitney
rank sum test: p=0.035). In addition, the orientation selectivity index of PSD-95
KO mice was less well matched between contralateral and ipsilateral eye responses
(orientation selectivity difference between ipsi and contra eye stimulation, mean±SEM:
WT=0.13+0.04, KO=0.20+0.03, Man Whitney rank sum test: p=0.02). Ongoing
behavioral experiments investigate what consequences these differences might have for
visual perception.
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[W 94] How does structural volatility affect cortical representations?
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Even without any explicit learning paradigm, ongoing synaptic changes can be found
in auditory cortex (e.g. [1]). How does this volatility in structural connections affect
the functional properties of cortical circuits? We address this issue in a parallel effort
of model and experiment, using a firing rate model to interpret population activity in
awake mouse auditory cortex recorded via chronic two-photon calcium imaging. Previous
experiments in mouse auditory cortex have shown that responses to complex sounds
typically cluster into a near discrete set of activity patterns [2]. In a parameter regime
where recurrent connections are sufficiently heterogeneous and the network is dominated
by inhibition our model can reproduce key features of experimental data such as this type
of clustering and a near log-normal activity distribution. Here we use this model to study
the impact of synaptic turnover on collective response properties. Changes in synaptic
strength are assumed to follow a random process matching empirical rules derived for
spine size changes observed in mouse auditory cortex [1]. The model shows that gradual
changes in the circuitry can induce rich dynamics in sensory representations: often,
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representations remain fairly stable over extended periods of time, interrupted by abrupt
and strong transitions that can affect the responses to several stimuli simultaneously, a
behavior which appears consistent with our experimental data. Moreover, the overall
degree of stability of stimulus responses depends more sensitively on the rate of change
of inhibitory than excitatory connections. The model predicts a several-fold slower rate
of change of inhibitory synapses to account for the degree of stability of representations
that we observe in the data. We conclude that even subtle and random ongoing changes
in synaptic connections can have a significant and highly nonlinear effect on the stability
of sensory representations.
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The cerebral cortex is a primary learning center in the mammalian brain. To assimilate
the stream of incoming information substantial circuit-turnover is therefore expected,
even in primary sensory cortices. It is a long-standing theoretical prediction that visual
cortical circuits are in a “state of flux”, such that e.g. the preferred orientation of the
neurons represents a non-equilibrium steady state of circuit turnover [1-2]. Neurons
in the primary visual cortex are selective for the orientation of light/dark edges in
their receptive fields and in primates and carnivores these neurons form iso-orientation
domains ordered around point-like topological defects called pinwheel centers. If the
circuit-turnover prediction is true and multiple steady states coexist, then signatures of
circuit-turnover should be observable as a rearrangement of the domains over time. We
experimentally tested this by a large-scale screen for the largest conceivable change in the
arrangement of orientation domains: the generation and annihilation of pinwheel pairs
[1-3]. We conducted acute high-accuracy large-scale intrinsic signal imaging experiments
in 30 ferrets. In 29 of the ferrets we further employed an adapted pairing protocol
[4] between imaging sessions to drive the cortical circuits out of a potential stationary
state. To harvest significant topological changes we quantified measurement precision
using re-sampling methods, the probability of pinwheel existence by tracking their
position between bootstrap samples, and the accuracy orientation preference estimation
from inter-sample tuning distributions. We analyzed the dynamics of 1590 pinwheels
by comparing the measured layouts in 4 subsequent imaging sessions of 42 minutes
each. Using this extensive data set we found rare but conclusive examples of pinwheel
rearrangement. The rate of these events was increased when the pairing paradigm was
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used. Our results demonstrate for the first time dynamical changes of visual cortical
architecture establishing conclusively that visual cortex networks are in a persistent state
of flux.
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Grey matter represents one of the energetically most expensive tissues in the mammalian
body. It is thus generally expected that evolutionary optimization minimizes the allocation
of grey matter to processing tasks and systems and favors functionally optimized network
structures. This should especially apply to the primary visual cortex (V1), the largest
areas in the neocortical visual system and one of its oldest parts. The so called common
design of orientation preference maps (OPM) found in different taxa which separated
since more than 65 million years ago during the basal radiation of placental mammals
indicates such an underlying process of evolutionary optimization [1]. However the utility
functions underlying these biological optimization processes are not well understood.
Since the visual world exhibits Euclidean geometry any candidate utility functions
for the architecture of the primary visual cortex is likely to be symmetric under the
Euclidean group. Here we use this principle to derive a general parameterization of
all symmetric utility functions for the design of the system of orientation domains and
patchy horizontal connections in V1. We further subdivide the space of optimization
principles by higher symmetries up to E(2) x U(1) x the so called permutation symmetry.
Manifolds of solutions called essentially complex planforms (ECP) were found to be
model independent ground states of the fully symmetric model [2]. These solutions also
are currently the best explanation of the common design of V1 orientation columns that
independently evolved in primates and carnivores [1,3]. We find that another family of
solution, the circular phase progressive solution (CPP), can also match the biologically
observed common design. While CPPs are typically unstable in fully symmetric models
this finding suggests to search through a wider space of utility functions for candidates
that have CPPs as genuine ground states.
Overall our study for the first time provides a comprehensive parameterization and clas-
sification of utility functions for V1. This parameterization will enable to systematically
screen the space of candidate optimization principles in a data-driven approach and to
probe whether their solutions fulfill the benchmark of the common design.
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Hierachy of E(2) optimization theories.
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Many animals use motion cues to extract relevant information about their environment
which they use for navigation. The neuronal network behind motion vision has been
investigated for more than 60 years and is still far from being solved. To compute
motion, the brain needs to detect luminance changes over space and time. Two classical
models describe how to compute direction selective signals, the Hassenstein-Reichardt-
Correlator (HRC) and the Barlow-Lewick model (BL). The HRC relies on a non-linear
amplification of motion in the preferred direction. In contrast, the BL model supresses
signals that move in the null direction. Recent studies propose a combination of these
two mechanisms that lead to direction-selective (DS) responses in the visual system
(Fisher et al., 2015, Leong et al., 2016, Haag et al., 2016). The cellular components
that implement null-direction suppression have not been revealed. Using in vivo 2
photon calcium imaging of the first DS cells of the fly visual system, T4 and T5, we
showed that direction selectivity and orientation tuning require the contribution of
inhibitory GABAergic circuits (Fisher et al., 2015). While a pharmacological block of
GABAA receptors leads to a loss of DS responses as well as orientation tuning in T4
and T5 neurons, T4/T5 specific knockdown of the GABAA receptor Rdl does not effect
direction-selectivity. This suggests that GABAergic inhibition does not act on T4 and
T5 directly but likely takes place in upstream circuitry. Therefore, we aimed to identify
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upstream inhibitory cells that are required for DS responses in T4 and T5. Reasoning
that a loss of DS responses would also lead to a loss of motion guided behaviors, we used
data from a forward genetic screen in which we identified InSITE Gal4 driver lines that
lead to a deficit in behavioural responses to moving ON and OFF stimuli, when synaptic
activity was blocked in the Gal4 pattern (Gohl et al., 2011; Silies et al., 2013). We
tested if the Gal4 expression patterns contained GABA-positive neurons and identified
cell types that might be required for motion vision. Additionally, we established a new
cell type specific reporter strategy termed ‘FlpFlag’ that intersects cell type specificity
with exon trapping and allows to visualize the endogenous expression of a protein in
a cell type specific way. We are currently testing the role of identified GABAergic cell
types for shaping DS responses and orientation tuning in the fly visual system.
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How neuronal computations in the sensory periphery contribute to computations in the
cortex is not well understood. We examined this question in the context of visual-motion
processing in the retina and primary visual cortex (V1) of mice. We disrupted retinal
direction selectivity – either exclusively along the horizontal axis using FRMD7 mutants or
along all directions by ablating starburst amacrine cells – and monitored neuronal activity
in layer 2/3 of V1 during stimulation with visual motion. In control mice, we found
an overrepresentation of cortical cells preferring posterior visual motion, the dominant
motion direction an animal experiences when it moves forward. In mice with disrupted
retinal direction selectivity, the overrepresentation of posterior-motion-preferring cortical
cells disappeared, and their response at higher stimulus speeds was reduced. This
work reveals the existence of two functionally distinct, sensory-periphery-dependent and
independent computations of visual motion in the cortex.
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In the retina, motion direction is processed by direction-selective (DS) ganglion cells
that preferably respond to a certain direction of drifting motion but are suppressed by
motion into the opposite direction. A subset of these cells is thought to report the
direction of global image motion, as induced by body, head and eye movements, to
downstream brain areas to guide compensatory eye movements. Although direction
and velocity of the projected image are constantly changing during natural viewing, the
directional preference of DS ganglion cells is usually probed with uniformly drifting bars
or gratings. Here, we report from experiments in the isolated salamander retina that also
during complex texture motion, the directional preference of DS cells is preserved. But
in complex visual scenes the encoding of motion direction is ambiguous due to the cells’
simultaneous encoding of local contrast changes. These ambiguities in the encoding of
motion direction of the individual cells can be resolved by reading from a population
of DS cells with different preferred directions. Here, the joint population response
provides more information about the global motion trajectory than would be expected
by summing the individual contributions, resulting in a synergistic trajectory readout.
Strong positive response correlations between DS cells enhance this synergy. This serves
as an example of how population codes synergistically improve the extraction of single
features from neurons that encode multiple features simultaneously from complex visual
scenes.
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Extracellular filed potentials are often challenging to interpret due to thousands of
contributing transmembrane current sources. We aim at revealing the neural sources
of the “neurophonic”, which is a frequency-following extracellular potential that can be
recorded in the network formed by the nucleus magnocellularis (NM) and the nucleus
laminaris (NL) in the brainstem of the barn owl. NL anatomy is well understood, and
putative generators of the neurophonic are the activity of afferent axons from NM, the
synaptic activation onto NL neurons, and spikes of NL neurons.
We recorded the neurophonic in response to binaural high-frequency tones (3-7 kHz)
close to the recording site’s best frequency, and we varied the interaural time difference
(ITD). The mean activity of the monaural inputs to NL does not change with ITD.
However, their relative phase does, causing cancellation or summation of input signals.
The activity of the binaurally sensitive output of NL, i.e., firing rate of NL neurons,
strongly depends on ITD. Our recordings contained both of these signals, and we
analysed the broadband power spectrum of the response (0-18 kHz).
The low-frequency component (LFc, 200-700 Hz) of the neurophonic spectrum depended
on ITD. The spectrum of extracellularly recorded NL neurons’ action potentials closely
resembled this component. Thus, the LFc reflects the contribution of action potentials
initiated in NL neurons. The spectral component at the stimulus frequency (SFc) was
much stronger than the LFc. The SFc also depended on ITD, reflecting the activity
of the inputs and their relative phase change with ITD. The power spectrum at other
frequencies did not depend on ITD. We used the LFc as a proxy for NL neurons’ local
population activity, and the SFc as a proxy for NM axons’ local population activity.
We compared the ITD and frequency tunings of these proxies at each recording site.
The best ITDs of the LFc and the SFc were independent. Also the tuning to stimulus
frequency was different: LFcs showed typically a 400 Hz lower best frequency than
SFcs. Both findings indicate that the LFc might originate from NL neurons’ axons in
the vicinity of the electrode. Related NL neurons can be located tens to hundreds of
micrometers away. The findings are consistent with the known anatomy of NL. Our
analysis thus reveals the small contribution of NL neurons to the neurophonic, improving
our understanding of the extracellular field potentials.
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Attention, reward, decision making

[T 1] Studying the role of dopamine in action and perception with
’active inference’ and a hierarchical gaussian filter in a social
decision-making task with different environmental volatilities
Sepehr Mahmoudian1, Rick Adams1, Christoph Mathys1,2, Karl Friston1

1. University College London , London, United Kingdom
2. International School for Advanced Studies (SISSA), Trieste, Italy

Computational psychiatry aims to enable mapping of mental processes to their neural
substrates for accurate diagnosis and treatment of mental disorders. To achieve that
end, more sophisticated biologically plausible normative models are needed that allow
for precise phenotyping of individuals based on their behavior in tasks.
In most computational models in psychiatry, perception and action are modeled as
separate processes. In recent years however, it has become evident that neurotransmitters
such as dopamine are involved in both action and perception, suggesting that one should
be studied in light of the other. To unify these two processes, ’active inference’, a
Bayesian framework for studying brain function has been proposed that formulates action
and perception as integral parts of the same inferential process [1]. This framework
provides a normative account of decision-making that prescribes behavior by bestowing
agents with a set of prior beliefs about how they should behave and the assumption that
they minimize their free-energy (or surprise). Conditions that are beneficial are encoded
as not surprising and minimizing free-energy naturally leads to pursuing actions that lead
to ‘rewards’ and avoiding others. These prior beliefs are established at different time
scales, for example, some are gained through evolution. We combined this framework
with a hierarchical Gaussian filter that can capture subjects’ ability to learn in conditions
with different levels of volatility [2].
We focused on studying the role of dopamine using our model. In active inference,
dopamine is hypothesized to encode the confidence in actions (i.e., the certainty that
choosing a policy would lead to the desired outcomes). Dopamine has also been shown
to be involved in learning in volatile environments but hypothesized to affect social
learning differently [3]. To study these hypotheses, a decision-making task with social
and non-social aspects was modeled that required learning under different levels of
volatility. We collected data from human subjects under the influence of L-DOPA
(a precursor of dopamine) or a placebo. We studied the group differences and our
hypotheses by analyzing the model parameters estimated from inverting our model based
on the decisions subjects made on the task. Finally, we showed the advantages of our
model by comparing it to a simpler model from the reinforcement learning paradigm
commonly used in behavioral modeling.
Acknowledgements
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[T 2] Environmental change events: neural encoding, attentional
modulation, and perceptual correlates
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Direction-selective MT neurons play a key role in the accurate encoding and perception
of visual motion. Allocation of spatial attention to the receptive field (RF) of MT
neurons enhances their responses. Although most studies have focused on the encoding
of constant visual motion and its attentional modulation, here, we address how MT
encodes a change in the direction of visual motion and investigate how attending to
such a stimulus influences its neuronal representation. We recorded the activity of 52
MT neurons from two hemispheres of two monkeys while they performed a direction
change detection task. While the animal kept its gaze on a fixation point, a static
random dot pattern (RDP) was shown either inside or outside the RF, cueing the animal
to the location of an upcoming target. After a short time period, two moving RDPs
were concurrently displayed. At a random time point a direction change of 25° occurred
in the RDP inside the RF. The monkey was instructed to detect the target change and
to ignore similar distractor changes to receive a fluid reward. Our data show that the
MT population response precisely encodes the motion direction, however, it encodes a
direction change that is larger than the physical change. For the distractor stimulus, the
overestimation was 8° and 13° for the target stimulus. We show this overestimation and
its attentional enhancement can be accounted for by normalization models of adaptation.
Using a multiplicative model based on the normalization model of adaptation, we were
able to largely capture the characteristics of the neuronal response to the direction
change. We also determined the perception of such direction changes in a human
psychophysical experiment, similar to that used with the monkey. Our results show
that a physical direction change of 25° is perceived as 32°, an overestimation of about
7°. Applying a linking model to our electrophysiological results support the notion that
an overestimated encoded direction change in MT underlies the overestimation of the
perceived direction change. Our data demonstrate that both encoded and perceived
direction changes are overestimated. The magnitude of encoded direction change
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overestimations is almost twice as high for attended vs. unattended stimuli. Our results
suggest that the role of attention is not only increasing the strength and accuracy of
attended stimulus representation, but also enhancing the neuronal representation (the
saliency) of change events.
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[T 3] Bayesian mapping reveals that attention boosts neural responses
to predicted and unpredicted stimuli
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Predictive coding posits that the human brain continually monitors the environment for
regularities and detects inconsistencies. It is unclear, however, what effect attention has
on expectation processes, as there have been relatively few studies and the results of
these have yielded contradictory findings. Here, we employed Bayesian model comparison
to adjudicate between 2 alternative computational models. The “Opposition” model
states that attention boosts neural responses equally to predicted and unpredicted stimuli,
whereas the “Interaction” model assumes that attentional boosting of neural signals
depends on the level of predictability. We designed a novel, audio-spatial attention task
that orthogonally manipulated attention and prediction by playing oddball sequences in
either the attended or unattended ear. We observed sensory prediction error responses,
with electroencephalography, across all attentional manipulations. Crucially, posterior
probability maps revealed that, overall, the Opposition model better explained scalp and
source data, suggesting that attention boosts responses to predicted and unpredicted
stimuli equally. Furthermore, Dynamic Causal Modelling showed that these Opposition
effects were expressed in plastic changes within the mismatch negativity network. Our
findings provide empirical evidence for a computational model of the opposing interplay
of attention and expectation in the brain.
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Brain disease, network dysfunction and intervention

[T 4] Automated Validation and Comparison of Models of
Neurophysiological Biomarkers of Psychiatric Disorders
Christoph Metzner1, Achim Schweikard2, Tuomo Mäki-Marttunen3, Bartosz Zurowski4,
Volker Steuber1

1. Centre for Computer Science and Informatics Research, University of Hertfordshire, Hatfield, United
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4. Center for Integrative Psychiatry, University of Lübeck, Lübeck, Germany

Research on psychiatric disorders has gradually shifted its focus from complex clinical
phenotypes towards the identification of biomarkers and endophenotypic measures.
Computational approaches have gained significantly more attention over the last years,
and this has led to the emergence of ’Computational Psychiatry’ as an independent
discipline. Computational modeling of biomarkers promises to more readily shed light on
the mechanisms underlying disorders and to facilitate the discovery of novel medications
[1]. However, the development of computational models requires scientists to have an
in-depth understanding of the current, relevant experimental data, the current state
of computational modeling and the state-of-the-art of statistical testing [2]. In a field
where both the number of experimental and computational studies grows rapidly, such
as psychiatry, this becomes more and more impracticable. Omar et al. therefore
proposed a framework for automated validation of scientific models, SciUnit [3]. Here,
we propose to adopt this framework for the computational psychiatry community and
to collaboratively build repositories of experimental observations, computational models,
tests and tools. As a case in point, we built an experimental database for auditory
steady-state response (ASSR) deficits in schizophrenic patients, based on observations
from several experimental studies [4,5,6], and, building on SciUnit, we have implemented
a set of tests that cover a range of ASSR deficits together with tools for advanced
visualization of model data. Here, we demonstrate how existing computational models
[6,7] can be validated against these observations and compared against each other.
We included computational models that not only comprise biophysically detailed as
well as abstract models, but that also differ in implementation (Python vs. Genesis
vs NeuroML2), in order to demonstrate the flexibility of the approach. Furthermore,
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our approach enables us to assess the variability of the produced model output. This
is achieved by generating a distribution of model instances where certain parameters,
such as the precise timing of noise inputs (however, not the strength/type of noise)
or the precise connectivity (however, not the underlying distribution of connectivity),
vary, which then is used to produce a distribution of model outputs. This can inform
on the robustness of the findings and can also be compared against the variability of
experimental observations.
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[T 5] Modeling ischemic stroke using NEURON’s reaction-diffusion
module
Adam JH Newton1, Alexandra H Seidenstein1, Robert A McDougal2, William W Lytton1,3
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In ischemic stroke, the accustomed network of synaptically-connected neurons is not
the main source of relevant interneuronal effects. There are additionally a large number
of toxins that are released, primarily from the central core area of ischemia. These
agents spread out by diffusion at different rates, serving as spatial "signals" that produce
different types and different severity of damage to cells, while triggering protective
mechanisms as well. The ischemic core, this central area of irreparable damage, is
surrounded by a penumbra where cells may be able to recover if adequate treatment is
received. We postulate that multitarget, multitemporal (and multiscale) pharmacological
solutions will be needed, where particular agents are directed at the correct time and
correct locations to interfere with the dominant pathological processes occurring at that
time and place.
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The modeling of this complex phenomenology requires that we combine many different
types of models to handle this multiscale, multiphysics problem. In brief, the sequence
of damage begins with blood vessel occlusion which triggers cascades of interacting
changes that include: 1. local glutamate release producing neuron activation which
can activate other synaptically-connected cells; 2. increased extracellular potassium
(spreading depression) 3. edema (cell swelling) which reduces extracellular volume; 4.
production of reactive oxygen species (ROS), which diffuse quickly and directly damage
proteins in other cells; 5. local inflammatory response with local invasion by a variety of
cell types, some intrinsic to the brain and others coming in due to breakdown of the
blood-brain barrier.
As an initial approach, we have assessed at the effects of spreading depression (spread
of potassium) on cell firing, K+ depolarizes cells, causing increased firing and increasing
their vulnerability to cell death. In the context of cell swelling, extracellular space
(ECS) volume is decreased which produces additional increase in ion concentration. We
additionally consider the effects of astrocytes by modeling ECS as an active medium
with K+ uptake that will decrease with glial damage. At the cellular level, ischemia
reduces ATP resulting in failure of the Na+/K+ pump and further rise in local K+.
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We present a computational approach to lesion formation characterised by the interaction
between pro-inflammatory T-cells, neurons and the microglial and astrocytic inflammatory
reaction of the brain parenchyma around a venule using a tractable dynamical model.
MS is a chronic autoinflammatory demyelinating disease of the central nervous system,
ultimately leading to progressive neurological disability in affected patients. With our
model we aim to understand the spatial and temporal sequence of immunopathological
events observed in human histology and in vivo two-photon imaging experiments in
mice. Specifically, we present a tractable low-dimensional computational model which
incorporates the available experimental data to predict the dynamical and spatial
structure of inflammatory reactions leading to neuronal cell death. We implement
direct excitotoxic interactions between neurons and pro-inflammatory T-cells leading to
elevated intracellular calcium levels [Siffrin, et al (2010)], as well as the neurotoxic effect
by the inflamed tissue, e.g. by over-activated microglia, and effects due to suppressed
astrocytic glutamate re-uptake. Our model gives an insight into the temporal and
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spatial dynamics centred around a venule, and ultimately allows for a classification
of lesion types into two groups: One in which neuronal damage is only caused and
limited to interactions with infiltrated pro-inflammatory T-cells, and a second in which
T-cells trigger an inflammation-induced reaction of the system, which causes widespread
neuronal damage. We explore the limits between these two regimes with respect to
structure, connectivity and susceptibility of the brain tissue, as well as duration of T-cell
infiltration.
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Standardized tests exist for the diagnostics of developmental lexical disorders, but
it is still difficult to associate the resulting behavior of a child while speaking with
functional deficits in the child´s brain. The mental lexicon is part of the speech and
language knowledge repository of individuals. It enables humans to produce as well
as to understand speech. The computational frameworks we used for implementing a
model of the mental lexicon and speech processing are the NEF (Neural Engineering
Framework, Eliasmith et al. 2012, Eliasmith 2013) and the SPA (Semantic Pointer
Architecture, Eliasmith et al 2012, Stewart & Eliasmith 2014). These frameworks
allow modeling of large scale neural networks, comprising sensory, motor and cognitive
components. The modeled task is the WWT 6-10 (Word range and Word Retrieval
Test, see Glück 2011), which comprises 95 items and is a picture naming and word
comprehension task. In case of incorrect answers semantic and phonological cues are also
given in order to facilitate word production. A major goal of this study is to introduce a
quantitative neurocomputational model for lexical storage as well as for lexical retrieval.
A further goal of this study is to associate neural dysfunctions with deficits in speech
behavior. Concretely, the deficits of interest are in lexical storage and lexical access.
The dysfunctions introduced here are the lesioning of specific neural SPA-buffers and of
specific neural connections between these buffers. Based on the behavioral data given
by the WWT, we are now able to associate functional neural deficits with symptomatic
behavioral data. This allows us to identify potential dysfunctions at neural level for
word retrieval and word storage.
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Computational connectomics

[T 10] Predictive power of connectome-based models
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Connectome-based models are an appealing framework for investigating brain dynam-
ics since they allow a potential causal investigation of large-scale mechanisms. The
connectome is the basis of this sophisticated apparatus and, consequently, the tools
used to reconstruct it can affect the modeling outcomes. Here we quantify how model
prediction reliability depends on the connectome reconstruction. We simulate resting
state dynamics in mouse brain using both (i) tracer connectome built though The Virtual
Brain (Sanz-Leon et al., 2013, Melozzi et al., 2017) exploiting the Allen Institute dataset
(Oh et al., 2014) and (ii) diffusion Magnetic Resonance Imaging (dMRI) connectomes,
from 19 animals, processed both with deterministic and probabilistic tractography.
The goodness of the simulated data is tested against experimental functional data
through head-fixed fMRI resting state experiments in the same 19 mice. To quantify the
contribution of connectome’s characteristics in shaping different simulated functional
pathways, we built surrogate connectomes, where the hypothesized differences were
enhanced. We demonstrate that preserving individual variability, i.e. not averaging
dMRI data between subjects, is crucial for obtaining reliable predictions. In line with
the finding we show that the predictions achieved by deterministic processed dMRI
data are more reliable than the ones obtained by probabilistic processed data, since
deterministic tracking preserves connectome specificity. The observation challenges the
supposed superiority of probabilistic algorithms in the large-scale models framework; a
similar finding in the graph theory context has been reported by Zalesky et al., 2016.
We find that the tracer-based connectomes’ ability in predicting resting state activity is
greater than the one of the dMRI-based connectomes. From the analysis of the potential
causes of this discrepancy we identify two, independently sufficient, factors: the dMRI
inability of detecting fiber directionality and of resolving complex fiber pathways. We
identify the areas whose connections, reconstructed with dMRI, mostly negatively affect
brain predictions. On the other hand we find the areas whose connections, since highly
characteristic for each brain, are better reconstructed by dMRI method than by the
tracer one, highlighting once again the importance of individual variability in modeling
predictions.
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The left part of the figure summarizes the workflow used to model resting state
dynamics in mouse brain. The right part of the figure shows the predictive power
ability of differently derived connectomes.
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Just as neurophysiologists attach recording and stimulation devices to brain areas in
vivo, we should be able to instrument in silico network models. We present here the
NESTConnectionApp, providing a graphical user interface to connect stimulation and
recording devices to spatially structured neuronal network models. The app will allow
computational neuroscientists to set up in silico experiments more easily than by scripting.
We anticipate that such graphical user interfaces will be increasingly requested by users
as network models grow in size and complexity. Beyond in silico neurophysiological
experiments, the app will also be useful in connecting artificial brains to robotics systems,
connecting robot sensors and actuators to brain models.
The NESTConnectionApp consists of two parts, the server side and the client side. On
the client side, the application is independent of NEST and is implemented in JavaScript,
using the libraries Three.js, D3.js, and React. Layer representations are created from a
JSON file providing information on neuron locations and properties. The user selects
neuron populations to be connected by marking rectangular og elliptic masks in a layer
of neurons. Additional specifications for the selection can be made, such as what type
of neurons to selected, and what synapse type to use for connections. A connection to
a specific device is then specified by dragging a line from the selection mask to a device.
Ultimately, all connection specifications are represented in JSON format and can be
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sent to the NESTConnectionApp server or stored locally for later retrieval. Note that
the JSON format only stores information about the selection masks and other selection
criteria.
To instantiate connections in a NEST simulation, both the network layout and the
connection specifications are sent to the NESTConnectionApp server in JSON format.
The server, implemented in Python, runs a Flask microframework and PyNEST. On
receiving network and connection specifications from the client, the server creates the
layers, devices, and connections between the two. Optionally the server can run a
simulation and send results back to the client. Work is currently under way to extend the
app to support three-dimensional networks and to integrate the NESTConnectionApp in
the Human Brain Project Collaboratory.

Instrumenting a two-population network: Two areas in the excitatory and one area in
the inhibitory population are instrumented with a Poisson generator, a spike detector
and a voltmeter.
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[T 12] Binding of visual features in the macaque prefrontal cortex
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Feature binding, the process through which different feature dimensions are combined
into a unitary percept, is a critical concept in cognitive neuroscience. Although different
previous studies have made efforts in understanding the underlying neural mechanism, it
remains poorly understood. Here we show that the activity of lateral prefrontal cortex
can be linked to binding of visual features in the macaque brain. For this purpose, we
trained two monkeys in a visual delayed match to sample task, to match the sample
and test stimulus in each trial based on their color and direction of motion. The
sample stimulus consisted of one patch of moving, random dots, while the test stimulus
consisted of two overlapping patches of moving dot patterns, one coherently moving
towards a direction and the other moving randomly towards an arbitrary direction. In
half of the trials, the color which the monkey had to match was assigned to the coherent
patch (bound condition) and in the other half, the color was assigned to the randomly
moving patch (unbound condition). Monkeys had to report by pressing a button, if
the sample and test stimuli matched in terms of their color and direction of motion.
Each animal was implanted with a 96 channel electrode array in its lPFC. LFPs were
recorded from the electrode arrays while the monkeys performed the task. Using a
Bayesian classifier, we show that this coding occurs exclusively in low frequency bands.
By applying a 10-fold cross-validation based on wavelet coefficients as the input features,
binding condition is decoded significantly in Theta (4-8 Hz) and Alpha (8-12 Hz) bands
with up to 67% and 66% accuracy, respectively. We conclude that feature binding is
coded in lPFC - a high-level cortical area - which receives input from both dorsal and
ventral visual pathways. Additionally, this coding occurs in low frequency bands, theta
and alpha, suggesting that the coding is widely distributed across neurons of lPFC.
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[T 13] Spiking Neural Networks. A new methodology for fMRI data
analysis.
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Classical methods of analysis in functional connectivity in MRI, as Independent Com-
ponent Analysis (ICA) or Sliding-Window Seed-Based Correlation Analysis (SWBCA),
have showed some limitations to recognize the dynamic evolution of the brain networks
[1]. The use of new computational approaches derived from Artificial Intelligence such
as Deep Learning or Artificial Neural Networks are increasing due to their successful
results. However further research of this technology is needed to validate the approach
This work shows a proof-of-concept of a novel methodology that uses the NeuCube
framework [2] for data where a no priori hypothesis or huge reduction of dimensionality
has been applied. However, its most promising feature is the capability to develop a
multimodal platform where different type of data (fMRI, EEG, DTI or epigenetics) could
be combined to identify new information and biomarkers or create predictive models in
the future.

DMN captured in real brain fMRI data
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Cell assemblies [1], i.e. interacting groups of neurons, were suggested as the building
blocks of information processing in the cortex. Modern electrophysiological techniques
allow to record hundred(s) of neurons simultaneously and thereby hopefully increase the
chances to observe active cell assemblies. Their activity is assumed to be expressed by
synchronous or spatio-temporal spike patterns (STPs) [2,3]. We developed SPADE [4], a
statistical method that detects synchronous spike patterns in massively parallel spike data
(MPST), i.e. in the order of 100 or more parallel spike trains. The method is able to deal
with the huge number of patterns occurring by chance in such high-dimensional data by
employing a combination of 1) frequent item set mining [5] to efficiently extract and
count repeating spike patterns and 2) a Monte-Carlo approach to evaluate the statistical
significance of the found pattern under the null hypothesis of independence. To avoid a
massive multiple testing problem we reduce the dimensionality of the pattern candidates
by pooling patterns of same number of neurons (size) and number of occurrences. In
[6] we applied SPADE to MPST extracted from electrophysiological data recorded from
motor and premotor cortex of non-human primates [7]. The monkeys performed a
delayed reach to grasp task, where they had after a preparatory period to pull and hold
an object using a side or precision grip and with high or low force. We hypothesized
that different cell assemblies are activated at different points in time in relation to
the behavior. Therefore recordings of the same set of neurons were analyzed for the
occurrence of significant spike patterns in different behavioral epochs and in the four
different behavioral conditions (combinations of object loads and grip types). We found
a variety of significant patterns that show specificity to the behavior. We recently
extended the SPADE method to also detect STPs [8, 9], i.e. patterns composed of
spikes occurring with temporal delays. It turned out that the same statistical framework
as in SPADE for synchronous patterns can be applied, although the number of chance
patterns is much larger than in the synchronous case. Preliminary analysis of the same
data as in [6] reveal that STPs do occur, also primarily during the movement, and are
formed by a larger number of neurons. All together these findings provide evidence for
the existence of higher-order patterns occurring in relation to behavior.
Acknowledgements
Supported by Helmholtz Portfolio Supercomputing and Modeling for the Human Brain (SMHB), EU
grant agreement No. 720270 (Human Brain Project, HBP) and DFG SPP Priority Program 1665 (GR
1753/4-2), IRTG 1901 ’The Brain in Action’ and the SFB-TRR 135, ANR GRASP France.

154

https://doi.org/10.12751/nncn.bc2017.0130


References
1 Hebb, D. O. (1949). The organization of behavior: A neuropsychological approach. John Wiley &

Sons
2 Singer, W., Engel, A. K., Kreiter, A. K., Munk, M. H. J., Neuenschwander, S., Roelfsema, P. R.

(1997) Neuronal assemblies: necessity, signature and detectability. Trends in Cognitive Sciences, 1,
252-261

3 Harris, K. (2005) Neural signatures of cell assembly organization. Nature Reviews Neuroscience, 5,
339-407

4 Torre E, Picado-Muiño D, Denker M, Borgelt C, Grün S (2013) Statistical evaluation of synchronous
spike patterns extracted by frequent item set mining. Frontiers in Computational Neuroscience, 7:132.

5 Picado-Muiño D, Borgelt C, Berger D, Gerstein GL, Grün S (2013) Finding neural assemblies with
frequent item set mining. Frontiers in Neuroinformatics, 7

6 Torre, E., Quaglio, P., Denker, M., Brochier, T., Riehle, A., & Grün, S. (2016). Synchronous
spike patterns in macaque motor cortex during an instructed-delay reach-to-grasp task. Journal of
Neuroscience, 36(32), 8329-8340.

7 Riehle A, Wirtssohn S, Grün S, Brochier T (2013) Mapping the spatio-temporal structure of motor
cortical lfp and spiking activities during reach-to-grasp movements. Frontiers in Neural Circuits, 7:48

8 Yegenoglu A, Quaglio P, Torre E, Grün S, Enders D. (2016) Exploring the Usefulness of Formal
Concept Analysis for Robust Detection of Spatio-Temporal Spike Patterns in Massively Parallel Spike
Trains. Graph-Based Representation and Reasoning 22nd International Conference on Conceptual
Structures, IC

9 Quaglio, P., Yegenoglu, A., Torre, E., Endres, D. M., & Grün, S. (2017). Detection and Evaluation
of Spatio-Temporal Spike Patterns in Massively Parallel Spike Train Data with SPADE. Frontiers in
Computational Neuroscience, 11.

©(2017) Quaglio P, Yegenoglu A, Torre E, Brochier T, Riehle A, Endres D, Grün S
Cite as: Quaglio P, Yegenoglu A, Torre E, Brochier T, Riehle A, Endres D, Grün S (2017) Spatio-
temporal Spike Pattern Detection in Massively Parallel Recordings. Bernstein Conference 2017 Abstract.
doi: 10.12751/nncn.bc2017.0131

[T 15] Neural system identification for large populations separating
“what” and “where”
David Klindt1,2,3, Alexander Ecker1,3,4, Thomas Euler1,2,3, Matthias Bethge1,3,4,5

1. Bernstein Center for Computational Neuroscience, Tübingen, Germany
2. Institute for Ophthalmic Research, Tübingen, Germany
3. Centre for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Straße 25, Germany
4. Institute for Theoretical Physics, University of Tübingen, Germany
5. Max Planck Institute for Biological Cybernetics, Tübingen, Germany

Neuroscientists classify neurons into different types that perform similar computations
at different locations in the visual field. Traditional neural system identification methods
do not capitalize on this separation of “what” and “where”. Learning deep convolutional
feature spaces shared among many neurons provides an exciting path forward, but the
architectural design needs to account for data limitations: While new experimental
techniques enable recordings from thousands of neurons, experimental time is limited
so that one can sample only a small fraction of each neuron’s response space. Here,
we show that a major bottleneck for fitting convolutional neural networks (CNNs) to
neural data is the estimation of the individual receptive field locations – a problem that
has been scratched only at the surface thus far. We propose a CNN architecture with a
sparse pooling layer factorizing the spatial (where) and feature (what) dimensions. Our
network scales well to thousands of neurons and short recordings and can be trained
end-to-end. We explore this architecture on ground-truth data to explore the challenges
and limitations of CNN-based system identification. Moreover, we show that our network
model outperforms current state-of-the art system identification models in the mouse
visual system.
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(Top) Our proposed CNN architecture in its simplest form. It consists of a feature space
module and a readout layer. (Bottom) Feature sharing in homogeneous population:
A) Simulated neurons, B) Model comparisons, C Learned filters.
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[T 16] A Statistical Field Model of Spatiotemporal Neural
Point-Processes Applied to Large Scale Neuronal Recordings
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High-density multi-electrode arrays now enable detailed recording of large-scale spa-
tiotemporal spiking activity, and there is a growing interest in point-process state-space
models for describing collective dynamics in population spiking activity. Conversely,
statistical field models of spatiotemporal neural activity have been influential in ex-
plaining qualitative phenomena in collective neural dynamics. This work connects
neural field theories with state-space point-process models, building on recent work
that combines latent field models with point-process observations for simulation and
inference in chemical reaction-diffusion systems. We develop a Bayesian spatiotemporal
point-process filter for neural fields, based on a master equation formulation of the
three-state "Quiescent-Activated-Refractory" model. We demonstrate a state inference
algorithm on spontaneous waves in the developing mouse retina, which can approximate
the posterior distribution for mean-field intensities and their spatial correlations. This
work lays the groundwork for integrating statistical neural field theories with data-driven
state-space models of spiking population dynamics.
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Although biophysically detailed multi-compartmental neuronal models can be useful
tools in understanding and predicting the behavior and function of neurons, building
such a model is still a complex task. Typically, many parameters of such a detailed
model have not been experimentally determined. These parameters are often tuned
using manual methods, with the aim of reproducing a few specific features of the real
cells. As a result, there are often many different models available for the same cell type,
which were developed and used for different purposes, and it is usually unknown how
they would behave outside their original context.
In order to make principled and reproducible model building possible, we are developing
software tools for the automated fitting of unknown parameters and for the automated
testing of model behavior in different situations.
For parameter fitting we are developing a general software tool called Optimizer
(https://github.com/KaliLab/optimizer). Optimizer offers a GUI which helps non-
expert users optimize models defined in Neuron using some common protocols. It also
offers many advanced features for expert users, and its modular structure makes it
possible to extend it by adding new ones. We describe how we improved Optimizer
since its initial release, how it can be used to compare the performance of different
algorithms, and how we used it to fit the parameters of a CA1 pyramidal cell model to
reproduce somatic spiking features.
To automatically and quantitatively test and compare the behavior of different models, we
are developing a python test suite called HippoUnit (https://github.com/sasaray/neuronunit),
which is based on NeuronUnit and SciUnit. There are three tests implemented so far in
HippoUnit that mimic experimental protocols to test the somatic spiking features and
probe the integration properties of the oblique dendrites of hippocampal CA1 pyramidal
cell models. The tests of HippoUnit allow the parallel run of the different stimulating
protocols and save the model’s response and the most important results for later use.
For quantitative comparison between the model’s response and experimental results it
uses feature-based error functions. The tests of HippoUnit have been integrated into
the Brain Simulation Platform of the Human Brain Project.
These tools should encourage collaborative research by making possible the systematic
and reproducible building, testing and comparison of detailed neural models.
Acknowledgements
This project has received funding from the European Union Seventh Framework Programme under grant
agreement No 604102, and the European Union’s Horizon 2020 research and innovation programme
under grant agreement No 720270.

157



Posters Thursday

References
1 P. Friedrich, M. Vella, A. I. Gulyás, T. F. Freund, and S. Káli, “A flexible, interactive software

tool for fitting the parameters of neuronal models,” Front. Neuroinform., vol. 8, no. 63, 2014.
10.3389/fninf.2014.00063

2 R. C. Gerkin, C. Omar, "NeuroUnit: Validation Tests for Neuroscience Models," Frontiers in
NeuroInformatics, Conference Abstract: Neuroinformatics 2013 10.3389/conf.fninf.2013.09.00013

3 S. Druckmann, Y. Banitt, A. Gidon, F. Schürmann, H. Markram, and I. Segev, “A novel multiple
objective optimization framework for constraining conductance-based neuron models by experimental
data,” Frontiers in Neuroscience, vol. 1, no. 1, p. 7–18, 2007. 10.3389/neuro.01.1.1.001.2007

©(2017) Sáray S, Appukuttan S, Bagi B, Garcia-Rodriguez PE, Kovách P, Lupascu CA, Mohácsi M,
Rössert CA, Tar L, Török MP, Davison A, Migliore M, Muller E, Freund TF, Káli S
Cite as: Sáray S, Appukuttan S, Bagi B, Garcia-Rodriguez PE, Kovách P, Lupascu CA, Mohácsi M,
Rössert CA, Tar L, Török MP, Davison A, Migliore M, Muller E, Freund TF, Káli S (2017) Automated
parameter fitting and testing of detailed neuronal models. Bernstein Conference 2017 Abstract.
doi: 10.12751/nncn.bc2017.0134

[T 18] Fully Convolutional Signal Transcription for Artifact Removal and
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Electrophysiological recordings are usually prone to artifacts that are commonly removed
by visual inspection and signal decomposition techniques such as ICA in clinical and
research contexts. In this work, we propose a generative deep learning model for
EEG signals inspired by the WaveNet architecture conditioned on biosignals from
other modalities (EOG, EMG and ECG) that are expected to capture relevant context
information on artifacts that are simultaneously recorded in the EEG signal. As our main
contributions, we show that it is possible to capture non-trivial correlations between time-
series from multiple modalities in a fully-convolutional neural network. By dampening the
context signals during inference, it is possible to remove the caused artifacts in the EEG
signal by (1) generating a possibly uncorrelated EEG sequence from a dampened version
of the context signal (2) estimating the context signal’s contribution to a particular
kind of artifact and removing this effect from the original EEG sequence, preserving the
signal information. In this poster, we present preliminary results on the openly available
MASS cohort-3 sleep database, comprising recordings from various patients recorded
during sleep.

A. Proposed WaveNet-inspired network architecture. Using recordings from ECG,
EOG and EMG recordings as context signals, the network generates an EEG sequence
matching the context signals. B. Demonstration of artifact removal C. Network
learning curve
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Human Brain is complex phenomenon especially when one can look at its functionality,
behaviour and evolutionary organization. Certainly brain is a different planet in human
body or embedded system which is associated with all integral functional actions executed
by itself as per need or thought. We can call this our thought converted into auxiliary and
supplementary behaviours into actions. Still even in 21st century where advancement
and innovation in medical technology more precisely medical imaging, medical physics
gives enough signature and insights to decode human brain fully but in reality we are
far away to explore human brain completely. One of the key challenges to decode
and explain consciousness, and also how our brain process mathematical problems.
Understanding mathematics or its ability fully depends on consciousness. We cannot
compute everything what we have in our conscious mind and it is also true that conscious
thinking or mind cannot control or simulated by a computer. Decoding & exploring
such complex problem really a herculean task. In our study and proposed model we are
introducing some artificial parameters by known behaviours and assumptions which are
governed by conscious thinking. These proposed parameters are called Baye’s conscious
thinking where we are already aware about probability of outcomes. We train such
conscious thinking with artificial neural mathematical ability and classify such outcomes
and compare them with controlled set of ideal parameters. We observe and draw a
conclusion that trained and untrained brain has huge potential difference in conscious
thinking or having conscious mind. Our proposed computational model will solve some
fundamental issues and key questions related to human brain. Of course computational
based model has certain limitation and could not meet natural parameters because brain
is dynamical with chaotic system and need some causal constraints. One can also bring
medical imaging for brain scan to check & establish new paradigm.
Keywords: Brain, Medical Imaging, Medical Physics, Encoding, Computational Model.
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Management of scientific data, including consistent organization and storage of data, is
a challenging task. Data needs to be annotated with metadata to provide information
about the underlying experiment to ensure reproducibility. Accessing and managing data
from multiple workplaces while keeping it in sync, backed up, and easily accessible from
within or outside the lab, is even more demanding. To minimize the time and effort
scientists have to spend on these tasks, we here present formats and tools designed for
comprehensive and reproducible management of scientific data. To easily store, select,
retrieve and share data using an open format we provide the NIX[1] format, which offers
convenient organization of data and metadata, supporting various data types including
electrophysiology and imaging, and enables to effectively link data and corresponding
analysis results as well as the associated metadata. NIX builds on the odML[2] metadata
format and is supported by the Neo[3] Python package for electrophysiology, enabling
Neo users to store their data in a common open format. Keeping data organized in the
lab is made easy via the GIN[4] services. GIN keeps track of changes to the contents
and organization of the files and provides secure remote access, making it convenient to
work from multiple workplaces while keeping all data available and in sync. Data can
be managed from web and file browsers or through a command line interface, enabling
even integration into data acquisition and analysis procedures. The system works with
any kind of directory structure and file types, using established technologies to keep
previous versions accessible when datasets are updated. The service furthermore makes
it straightforward to share data within a lab or with off-site collaborators and to work on
it together. Any data hosted with the service can easily be made persistently available
for publication using digital identifiers. Combining GIN and NIX allows streamlining
data workflows and eases the sharing of well-annotated datasets within the lab, among
collaborators between labs, or with the public.
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Determining causal relations from time series observations is a non-trivial task and
recently gained paramount interest in many scientific fields including neuroscience. The
knowledge of causal relations is particularly important in the treatment of patients
with drug-resistant epilepsy, where the only treatment option is the surgical removal of
epileptic focus. In this case, clearly, there is no opportunity to execute experiments and
the least invasive solution is to implant electrodes into brain tissue and try to localise
the epileptic focus from extracellular field potential observations.
When we observe correlation between two time series it does not determine the exact
causal relation between the variables. That it is possible that one is a cause of the
other or vice versa or both and it is also possible that there is a hidden common cause
triggering the correlation between the two variables.
In the ‘50-s Norbert Wiener proposed a predictive principle for determining directed
causal relations from time series observations. In the next decade the first practical
implementation was made in an autoregressive modelling framework by Clive Granger.
In the early 21st century transfer entropy was introduced as nonparametric method for
determining causal relations using the very same Wiener principle. A few years later
George Sugihara et. al. published a causality detection method using the dynamical
systems abstraction. It is based on Takens’ theorem and the topological equivalence of
manifolds in state-spaces reconstructed with time-delay embedding from time series.
However these methods can be used for retrieving directed causal information from
observations there have been no single method existed yet that could identify all causal
cases, for example none of the aforementioned methods can detect a hidden common
cause.
Here we present a new causality detection method which uses manifold dimensions to
determine causal relation from time series data. This method can identify independence,
directional and circular causal effects as well as hidden common causes properly by
assigning probabilities to each possible case.
We demonstrate our method on simulated examples and on neurophysiological measure-
ments.
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Relation between intrinsic dimensions reveals causal connections
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Learning, plasticity and memory

[T 23] Input-dependent synaptic consolidation in Hebbian cell assemblies
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Long-term synaptic plasticity plays a major role in the formation of memory representa-
tions in the brain. It exhibits an early phase with changes lasting up to several hours
and a late phase with changes lasting up to several days [1, 2, 3, 4]. The transfer
from the early to the late phase is referred to as synaptic consolidation. It requires a
synaptic tag and protein synthesis in the postsynaptic neuron (synaptic tagging and
capture hypothesis [2, 3]). Protein synthesis as well as the formation of tags depend
on ongoing neuronal activity and external stimuli. Some research has been done on
these dynamics using single-synapse models of synaptic consolidation [5, 6, 7], but the
role of consolidation in network phenomena such as Hebbian cell assemblies remains
elusive. Hebbian cell assemblies are groups of neurons with significantly strengthened
interconnections. Their neurons tend to fire together, in this way making them serve as
memory representations [8]. We assume that the impact of synaptic consolidation on
the formation, stabilization and interaction of cell assemblies is of great importance.
Here, we study the stabilization of cell assemblies following different stimulus protocols,
that is, the input-dependent transfer of assembly-related synapses from the early-phase
to the late-phase state. For this, we use a spiking network model with early- and
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late-phase synaptic plasticity based on a model widely used for single neuron dynamics
[6, 7, 9]. Depending on the strength of the stimulus, our results exhibit three different
scenarios: consolidation in the whole assembly, consolidation restricted to the core of the
assembly and no consolidation at all. In the latter case, only the early phase of synaptic
plasticity is induced. Our work provides a further step in understanding the consolidation
of memory representations in biologically realistic neuronal networks. Further studies
shall yield the impact of our findings on the interaction between cell assemblies.
Acknowledgements
The research was funded by the H2020-FETPROACT project Plan4Act (#732266).

References
1 Abraham WC: How long will long term potentiation last? Phil. Trans. R. Soc. B 2003, 258:735–744.

10.1098/rstb.2002.1222
2 Frey U, Morris R: Synaptic tagging and long-term potentiation. Nature 1997, 385:533–536.

10.1038/385533a0
3 Redondo R, Morris RGM: Making memories last: the synaptic tagging and capture hypothesis. Nat.

Rev. Neurosci. 2011, 12:17–30. 10.1038/nrn2963
4 Sajikumar S, Navakkode S, Frey JU: Identification of compartment- and process-specific molecules

required for "synaptic tagging" during long-term potentiation and long-term depression in hippocampal
CA1. J. Neurosci. 2007, 27:5068–5080. 10.1523/JNEUROSCI.4940-06.2007

5 Barrett AB, Billings G, Morris RGM, van Rossum MC: State based model of long-term potenti-
ation and synaptic tagging and capture. PLoS Comput. Biol. 2009, 5:e1000259. 10.1371/jour-
nal.pcbi.1000259.g005

6 Clopath C, Ziegler L, Vasilaki E, Büsing L, Gerstner W: Tag-trigger-consolidation: a model of
early and late long-term potentiation and depression. PLoS Comput. Biol. 2008, 4:e10000248.
10.1371/journal.pcbi.1000248

7 Li Y, Kulvicius T, Tetzlaff C: Induction and consolidation of calcium-based homo- and heterosynaptic
potentiation and depression. PLoS One 2016, 11:e0161679. 10.1371/journal.pone.0161679

8 Hebb DO: The Organization of Behaviour, 1st Edition. New York: Wiley; 1949.
9 Graupner M and Brunel N: Calcium-based plasticity model explains sensitivity of synaptic changes

to spike pattern, rate, and dendritic location. Proc. Natl. Acad. Sci. 2012, 109:3991–3996.
10.1073/pnas.1109359109

©(2017) Luboeinski J, Tetzlaff C
Cite as: Luboeinski J, Tetzlaff C (2017) Input-dependent synaptic consolidation in Hebbian cell
assemblies. Bernstein Conference 2017 Abstract. doi: 10.12751/nncn.bc2017.0139

[T 24] How should interneuron activity be regulated to homeostatically
control principal cell firing rates?
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Neuronal networks in the brain respond to chronic manipulation of activity with changes
at a variety of different scales, both spatial and temporal [1]. For instance, changes can
be observed in the firing rates of various interneurons, which respond over different time
courses following experimental intervention [2-4]. The functional role of these responses
are poorly understood, but one plausible interpretation is that the activity of certain
interneurons is regulated such that the firing rates of excitatory cells are brought back
to a homeostatic set-point. Because interneurons project to many excitatory cells, such
a form of homeostasis would act on the network level, rather than cell-autonomously, as
most classical homeostatic mechanisms [1].
Here, we address the question: Which rules should govern interneuron-based forms
of homeostasis? That is, which neurons in the network should change their activity
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in response to deviations in the firing rate of a single excitatory cell? Is a local rule
sufficient—one that changes those interneurons to which the excitatory cell projects—or
does homeostasis require a more elaborate, non-local scheme?
Using numerical simulations, we first show that for local rules operating on excitatory-
to-inhibitory synapses (analogous to [5]), excitatory cells compete to control inhibition,
driving most of the network into a quiescent state. This competition arises when
input heterogeneities are combined with the fanout in recurrent connectivity, producing
de-localized inhibition when local inhibition is asked for. Such local rules regulate neither
individual cells nor population activity.
Having shown that local rules are not homeostatic, we derive a gradient-based rule—with
the objective of minimizing the total squared-error of all individual excitatory firing rates
with respect to the homeostatic rate. While the resulting rule is biologically implausible,
we discovered that it can be simplified to yield two plausible, though non-local rules: one
rule relying on retrograde signals, and the other relying on more generic diffusion-like
signals. Both change the activity of each interneuron in response to their postsynaptic
excitatory population, which makes them effective in controlling the population rate.
Our results suggest that if interneuron activity is to homeostatically control principal
cell firing rates, then it must rely on a non-local measurement of population activity,
rather than a cell-autonomous mechanism.
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[T 25] On the capacity of sequence learning neural networks
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There is a long-standing interest in the relationship between sequences of brain activity
and behavior and cognition. Hebb theorized that sequential activation of cell assemblies
(“phase-sequences”) would form the basis of “the thought process” [1]. Sequential neural
activity that is time-locked to behavior has been observed in the neural circuits of
the hippocampus [2], cortex [3] and in the “high vocal center” (HVC ) in birds [4].
Revealing the underlying neural mechanisms of these sequential neural activity patterns
and explaining how these correlates participate in information processing remains an
open task in computational neuroscience. The question of how neural systems can
reliably self-organize to learn and reproduce sequences has been long studied in the field
[5]. Recently there has been a promising modelling attempt at investigating sequence
learning in the cortex [6] and dynamical sequence warping in striatum [7]. The proposed
models however have only been studied with a limited number of sequence patterns and
it still remains unknown how they perform in conditions with a larger sequence memory
load. This is an important question in the context of network scaling properties. In this
work we propose a non-spiking attractor network model capable of recalling and learning
sequences of attractor memories. This model extends the previous work [5], where a
spiking attractor network model can learn sequences of attractor states, manifested
as quasi-stable cell assembly activations, by means of the the Bayesian Confidence
Propagator Neural Network (BCPNN) synaptic plasticity rule. Since the question about
the storage capacity of the proposed network in various configurations has not yet been
addressed systematically, we have conducted a comprehensive quantitative analysis in
this work. In essence, our contribution is two-fold: i) we put forward a firing-rate system
than can self-organize with the adequate stimulus to both learn and reproduce sequences
with biologically relevant constraints and architecture, and ii) we advance a methodology
to parameterise the sequence space which facilitates a systematic study of sequence
storage capacity in models.
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[T 26] Arithmetic encoding, reservoir computing, criticality and
biological implications
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Arithmetic encoding (AE) [1] and reservoir computing have so far been handled as
two complete unrelated topics. We demonstrate that an arithmetic encoder can easily
modified into a linear online filter. This form of the encoder relates to the initially
independent ideas about one type of recurrent neural networks, that are echo state
networks, because this filter fulfills the echo state property (ESP). Thus, it is a reservoir
in the sense of reservoir computing. At this point we see important implications and
insights mostly on reservoirs. In the past many researches have indicated that the
performance of reservoirs significantly depends on their dynamic features and recurrent
connectivity. Near edge of chaos approaches [2] have been proposed as peak performers
with regard to reproducing trained output capabilities. This performance may be caused
by the fact that in the case of a strong recurrent connectivity a larger window of the input
history is available for information processing. However, the onset of strong dependence
of initial settings (one might call that "chaos") sets a limit to recurrent connectivity
[3,4]. Since due to their physical or mathematical design all types of reservoirs have a
limit of their information capacity, features of applicable memory compression may turn
out to be very useful to get even a longer time span of the history into play in order to
train an output. The present contribution details out the above mentioned version of
the AE that fulfills the ESP, discusses implications on multi-neuron reservoirs and also
goes into the field of critical echo state networks (ESNs), which is also connected with
features of AE. Also in critical ESNs the memory is only limited by the entropy of the
input time series in relation to the reservoir’s capacity. The results show that cESNs
are potentially a good concept for memory compression in reservoirs. We are further
discussing how multi-neuron cESNs can be designed, biological implications of cESNs
with regard to power law statics found in brain slices (also cf. [5]). As an additional
feature, it is possible to evaluate probabilities of future inputs (following ideas in [6,7])
out of the reservoir dynamically which might raise the possibility of incremental learning.
So, the purpose of the poster is to bring together ideas about recurrent neural networks,
memory compression, input prediction and incremental learning.

Semi log plot of the difference of two initially different internal states of otherwise
identical neural networks is retained over time if both networks receive identical input.
Input is synthetic, where 99 iterations the input is as expected with p=0.99 while at
one iteration another input occurs.
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The learning of spatiotemporal sequences by the cortex and hippocampus is of funda-
mental importance to navigation, pattern recognition, motor learning, and numerous
other vital cognitive functions. This action is particularly remarkable in light of its
complex and unsupervised nature, when most modern machine learning techniques
require extensive supervision for such learning. Within the cortical-hippocampal loop,
phenomena known as sharp wave-ripples (brief bursts of increased and semi-synchronous
activity occurring primarily during rest or sleep in which previously observed activation
patterns are frequently embedded) are theorized to be critical for the consolidation of
memories and long-term pattern storage (Diekelmann and Born 2010). We present here
a unified model combining a sparse inhibitory and recurrent excitatory population of
simple conductance-based leaky integrate-and-fire neurons with two synaptic plasticity
mechanisms (one causal Hebbian and the other homeostatic) and a homeostatic intrinsic
neuronal plasticity mechanism (Lazar et al. 2009, Hartmann et al. 2015, Miner and
Triesch 2016). All plasticity rules are local. The model’s spontaneous activity is driven
by a combination of the homeostatic intrinsic plasticity and intrinsic noise. We find
that the model is capable of learning (via repeated unsupervised exposure), storing, and
recalling (at an accelerated timescale) a sequential spatiotemporal pattern upon receiving
a cue. We also find that reducing the intrinsic driving noise level in the model, in a clear
analog to reduced sensory input and activity in the rest of the brain, as during sleep or
rest, results in sporadic brief spontaneous bursts of synchronous activity, which, after
pattern learning, tend to acquire embedded structure and order. Earlier work (Jahnke
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et al. 2015) has also shown similar learning and sharp wave-ripple-like spontaneous
replay functionality, but relied on the presence of complex dendritic nonlinearities, and,
perhaps more notably, lacked the obvious rest-analog which could introduce or remove
the presence of this sharp wave-ripple-like phenomenon. We believe this model, and
the particular set of plasticity mechanisms that allow it to self-organize, demonstrates a
simple and parsimonious explanation for diverse vital neural phenomenon (in this case,
specifically, rapid memory replay within sharp wave-ripples) , many of which have never
been simultaneously expressed before in such a relatively simple model.

Raster plots showing spikes during and surrounding spontaneous synchronous events
before and after repeated exposure to sequentially structured stimuli (“training”) and
cue-triggered recall.
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Working memory (WM) refers to the ability of humans and animals to store and process
the continuously incoming stream of stimuli and information on short time scales [1].
The neuronal dynamics implementing these two core functions of WM, to store and to
process information, are still a matter of debate. It is unclear whether working memory
relies on attractor dynamics [2] or on transient dynamics [3]. Experimental evidence
and theoretical considerations provide support for both of these seemingly contradictory
hypotheses.
We approach this debate by considering the fact that, when interacting with the
environment, subjects cannot rely on precisely timed input stimuli. The consequence of
unreliability of input stimuli on the operation of WM has been psychologically studied
in the popular N-back task. In this task, introducing unpredictability of the occurrence
timing of the stimuli does not significantly influence the subject’s performance [4]. We
investigate which kind of neuronal dynamics enables a network to perform the N-back
task with a comparable level of robustness with respect to variances in the stimuli
timing.
The most widely used network model of transient neuronal dynamics is the framework
of reservoir networks [5, 6]. We test the performance of reservoir networks trained
with different learning algorithms and with different feedback topologies on the N-back
task. Interestingly, we find that introducing already small variations in the timing of
the input stimuli reduces the performance of reservoir networks in the N-back task
significantly. We show that the performance can be restored by explicitly training the
network to represent past input stimuli via the activity states of feedback loops. As this,
in turn, effectively introduces attractor states into the network, we conclude that only
by exploiting the properties of both, attractor states as well as of transient dynamics,
a neuronal network is able to achieve a performance comparable to the one found in
WM experiments. Task-relevant information is stored in attractor states and processing
of information is accomplished by transient dynamics. We predict that in the N-back
task, an explicit recall stimulus should avoid a drop in performance resulting from
introducing delays between stimulus perception and action execution. Thus, we provide
an experimentally verifiable hypotheses about the underlying dynamics of WM ruling
out purely transient reservoir networks as a plausible model [7].
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A) Benchmark N-Back task with a purely transient network. Red synapses are adapated
during learning. B) Performance of the reservoir. C) Same as in A but with additional,
specially-trained readout neurons. D) Performance of the reservoir with additional
readouts.
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[T 29] Presynaptic inhibition provides a rapid stabilization of recurrent
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Synaptic plasticity in recurrent neural networks is believed to underlie learning and
memory in the brain. One practical problem of this hypothesis is that recurrent excitation
forms a positive feedback loop that can easily be destabilized by synaptic plasticity.
Numerous homeostatic mechanisms have been suggested to stabilize plastic recurrent
networks [1], but recent computational work indicates that all these mechanisms share a
major caveat: An effective rate stabilization requires a homeostatic process that operates
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on the order of seconds, while experimentally observed mechanisms such as synaptic
scaling occur over much longer timescales [2].
Here, we suggest presynaptic inhibition as a compensatory process, which does not suffer
from this discrepancy in timescales. Experimental studies have revealed that excess
network activity can trigger an inhibition of transmitter release at excitatory synapses
through the activation of presynaptic GABA(B) receptors, which effectively weakens
synaptic strength [3]. This attenuation of recurrent interactions has been observed
to be fully reversible and act on timescales of 100s of milliseconds, thus constituting
a candidate mechanism for the rapid compensation of elevated recurrent excitation
induced by synaptic changes.
To highlight the beneficial properties of presynaptic inhibition in excitatory recurrent
circuits, we analyzed a simple rate-based recurrent network model. Presynaptic inhibition
is mimicked by multiplicatively scaling down recurrent excitatory weights in response
to excess population activity. Using analytical and numerical methods, we show that
presynaptic inhibition ensures a gradual increase of firing rates with growing recurrent
excitation, even for very strong recurrence (Fig. 1A). In contrast, classical subtractive
postsynaptic inhibition is unable to control recurrent excitation once it has surpassed a
critical value (Fig. 1B). Moreover, we find that presynaptic inhibition stabilizes firing
rates in a recurrent population subject to plasticity while allowing synaptic homeostasis
to operate on biologically plausible timescales.
In summary, the multiplicative character of presynaptic inhibition provides a powerful
compensatory mechanism to rapidly reduce effective recurrent interactions. Remarkably,
presynaptic inhibition conserves the underlying network connectivity and might therefore
set the stage for stable learning without interfering with plasticity at the level of single
synapses.

Steady- state firing rates as a function of recurrent strength for different input
intensities. A. Presynaptic inhibition B. Postsynaptic inhibition
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[T 30] Gap junction plasticity as a mechanism to regulate network-wide
oscillations and to support neuronal communication through
synchronisation.
Guillaume Pernelle1, Wilten Nicola1, Claudia Clopath1
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Abstract Cortical oscillations are thought to be essential for many biological functions
and cognitive processes. Several mechanisms have been proposed to promote oscil-
lations. One prominent but understudied mechanism is gap junction coupling. Gap
junctions are ubiquitous in cortex between GABAergic inhibitory neurons. Moreover,
recent experiments indicate that the strength of gap junctions can be modified in
an activity-dependent manner, similar to chemical synapses. We hypothesised that
activity-dependent plasticity of gap junctions acts as a potential mechanism to regulate
oscillations in the cortex. To test this, we developed a computational model of gap
junction plasticity in a recurrent cortical network. Gap junction coupling divides the
network activity in two regimes, either asynchronous irregular for low coupling or syn-
chronous regular for strong coupling. We showed that indeed gap junction plasticity can
regulate oscillations. Moreover, we showed that gap junction plasticity allows effective
communication between neuronal assemblies, through neuronal synchronisation. Cortical
networks oscillating at gamma frequencies ( 40 Hz) can therefore successfully transmit
signals up to 10 Hz using electrical synapses.
Results Gap junction (GJ) coupling divides the network activity in the asynchronous
irregular (AI) regime where sparse firing dominates, and the synchronous regular (SR)
regime where bursting activity prevails (Figs. A and B). Haas et al. shows that bursting
activity leads to GJ long-term depression (gLTD). We modelled their bursting protocol
to infer the gLTD learning rate. We assumed that sparse firing would lead to GJ
potentiation (Fig. C). GJ plasticity regulates oscillations and finds a balance between AI
and SR regimes. The network reacts to a step current by oscillating, which can make
readout neurons fire. If they are plastic, GJs are depressed due to the bursting activity
associated with the oscillations. The network then leaves the SR and downstream
neurons stop firing, Thus, the regulation of oscillations mediated by GJ plasticity allows
for sparse but salient information transfer (Fig. D). Moreover, gap junction plasticity
allows robust cross-network synchronisation (Figs. E-F). Finally, gap junction plasticity
increases robustness of information transfer trough frequency modulation (Figs. G-H).
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Hippocampal place cells have been studied extensively in rodents, both in experiments
and models. Activity of place cells during free exploration has been found to be replayed
later, in sharp-wave-ripple (SWR) events during rest. The observed variability in place
field size, however, has not been considered in most existing models of place cell activity
and sequence replay. These different sizes create an ambiguity in the order of cells. For
example, if one cell has an earlier activity onset, but a later peak and end of activity
compared to a second cell. On the other hand, the different sizes offer an additional
degree of freedom to encode path information. We explore three methods of building a
recurrent neural network (RNN) from place cell activity, using either the start, middle or
end of place cell activity to define an order relation. The resulting RNNs are discrete-time
dynamical systems that use the thresholded function proposed in Medina and Leibold
(2013). We then study the properties of the resulting RNNs with a special emphasis on
properties related to place field size. All three order relations result in sequence replay
and have distinct dynamical properties. These differences include the number of time
steps that each cell is active, as well as the distribution of field sizes among active cells.
The connection matrix of each RNN and their differences are visualized as a vector field
and diffusion tensor. For a crossing path, each order relation requires different values of
feedback inhibition to replay the correct sequence.
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Timing and motor control are two classic cerebellar learning tasks. Starting from
the seminal work of Marr[1] and Albus[2], a number of theories have been developed
describing the underlying mechanisms[3,4]. In general, timing is regarded as the more
fundamental task, since sequencing and timing of motor primitives is a prerequisite
to dexterous motor control. We challenge this basic notion by showing that a simple
cerebellar model can utilize gain adaptation, the core element of motor learning, to
reproduce time intervals in a Pavlovian eyeblink conditioning paradigm.
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We mathematically model delay eyeblink conditioning as a gain adaptation task in which
the cerebellum drives an external integrator as a timer. The external integrator can be
neuronal (e.g., a line attractor network) or mechanical (e.g., a muscle). We discuss the
results and consequences of our model, many of which are consistent with biophysical
lesioning, recording, stimulation, and reversible inactivation studies (see, e.g., [5,6]).
We augment the discussion with previous results from computer simulations and robotic
experiments.
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[T 33] Quantifying memory in the spike generation of single neurons in a
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For neural coding it is crucial to which extent a neuron’s spike generation carries
information about its own and the network’s past activity. This can be quantified using
information storage and transfer [1] that are powerful methods as they do not require
knowledge about the exact biophysical mechanisms. However, they are difficult to
estimate from data and crucially depend on the chosen representation or embedding
of the spiking activity. In past studies, these embeddings were commonly chosen to
simplify the estimation (e.g. only one past bin), thereby possibly ignoring relevant
information about the spike generation. We overcome this by introducing a systematical
approach to find the most informative embedding that still allows reliable estimation.
We benchmarked our method for information storage on a realistic model neuron [2]
with analytical solution, showing the strong effect of embedding on the inferred storage
and the robustness of our method (b). The approach was then used to compare memory
effects of spike generation in vivo (awake rat hippocampus [4]) (c) and in vitro (rat
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cortex [5]) (f). Memory is quantified as the mutual information (MI) between the
future state st (spike or no spike) and the past activity sτt as a binary sequence of
spike counts for uniform (τi = τ, ∀i) or exponential (τi = τ exp(κi)) embedding (a).
To make results comparable we study the relative memory M = MI/H ∈ [0, 1], with
H being the Shannon information of the spiking process without history. We use a
Bayesian estimator (NSB [3]) to estimate M from data and optimize the embedding
parameters to maximize memory for fixed embedding depth T under the constraint of
reliable estimation. By systematically increasing T we find the T ∗ for which the inferred
memory is maximal (b), giving a lower bound for the minimal past time range containing
all relevant information. We found that in vivo and in vitro past activity of at least 500
ms, or 100 ms, respectively, contributes information about the neuron’s spiking (e,h),
with one bin being insufficient. Furthermore, we fitted a GLM to the data and found
interesting differences in the memory in vivo and in vitro when we also incorporated the
recorded population past activity (PPA) in the model. In vitro, there is a substantial
decrease of memory when PPA is given, meaning that the memory is highly redundant,
while in vivo it is clearly non-redundant.

a) Representation of spiketrains as binary sequences. b) Estimated and true memory in
the model for optimized exponential embedding in comparison to uniform embedding.
c), e) show application to in vivo, d), f), to in vitro MEA recordings in rat. g) and h)
show M∗(T ∗), averaged over all neurons.
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[T 34] Detecting hippocampal, prefrontal and parietal cell assemblies
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In 1949, Donald Hebb suggested that the repeated coactivation of a group of neurons
leads to the reinforcement of their shared synaptic connectivity, forming what he called
a cell assembly (1). The idea is that this altered connectivity matrix, once formed,
would then induce assemblies to display coherent activity patterns either spontaneously
or whenever the original stimulus conditions are reinstated. Leveraging this proposed
excess in pattern occurrence rates, we recently developed a statistical method to detect
assembly activations in non-stationary multiple single units recordings. The method
performs a fast, non-stationarity-corrected parametric test over a large number of activity
patterns and temporal scales, treating them as free parameters to be determined for
each specific dataset (2).
Here we present preliminary results from analyses of CA1-prefrontal-parietal co-recordings
from sleeping and behaving rats. During performance of a maze task, assembly activation
across a range of timescales correlated with a range of salient features, including position,
running trajectory and reward. As expected, we observe some reactivation of task-
related assemblies during sleep (3-4). While such reactivation is found in about the same
proportion in all the three regions, we found that the percentage of assemblies modulated
by the hallmark oscillations of non-REM sleep – ripples, spindles and delta waves – is
much higher in the hippocampus than in the neocortical regions. Moreover, while CA1
assemblies were typically activated during these oscillatory events, the majority of PFC
and PC assemblies were inhibited.
Current analyses are quantifying to timescales of assembly activation, and the experience-
dependent interrelationships between assemblies active on the maze and during subse-
quent sleep.
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Synaptic short-term depression and facilitation regulate the information conveyed between
neurons [1-2]. The reliability of a synapse depends on the number of synaptic release
sites, which varies across different synapses from a single release site to hundreds of
release sites. More release sites enhance the reliability of the synapse by increasing spike-
evoked release probability, but at the cost of an increased probability of spontaneous
release. To study the effect of the number of release sites on synaptic information
efficacy, we model a synapse with K independent release sites. Each release site is
treated as a binary asymmetric communication channel whose state is determined by
the release history of the site [3]. We assume that one vesicle from any site releases
enough neurotransmitter to activate all the receptors on the post-synaptic site (Fig. 1A).
After each release, the release site is inactivated and recovers slowly back to the normal
state. Energy efficiency is a critical aspect of information transmission. Without taking
energetic cost into consideration, we had previously shown that the optimal number of
release sites ranges from 6 to 16 for realistic parameter values of synaptic depression
and input spike rates between 2 and 20 Hz [4]. Here we compute the energy-normalized
information rate, by assuming that one unit of energy is consumed for each vesicle
release. The energy-normalized information rate is highest when the synapse has only a
single release site (Fig. 1B). This finding is consistent with the low number of release
sites found in most central nervous system synapses. We also calculate the optimal
input spike rate for synapses with one release site (K = 1) and show that the optimal
range of input spike rates is between 4-8 Hz, provided that the spike-evoked release
probability of the synapse (p0) varies between 0.5 and 1 (Fig. 1C). The calculated range
of spike rates is also compatible with the average spike rates in cortical white matter.
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A) Information transmission through multiple release sites of a synapse. B) Energy-
normalized information rate vs. the number of release sites, for different input spike
rates. C) For K=1, energy-normalized information rate vs. input spike rate for various
spike-evoked release probabilities.
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Neuronal activation sequences are the basis for many animal behaviours. An active
research question is how the brain learns these neural time-series. This question is directly
related to the research topics of learning in recurrent neural networks and reservoir
computing. In contrast with many biologically unrealistic algorithms like FORCE learning
[1] or Back-propagation through time [2], we propose a biologically plausible way for
reservoir shaping and time-series learning.
Our network consists of two-compartment neurons as introduced by Urbanczik and Senn
[3] (see Figure 1a). In these neurons the membrane potential U is a combination of
the dendritic voltage V and the somatic voltage UM = gIEI+gEEE

gE+gI
, which functions

as a teacher, by weakly nudging the neuron’s membrane potential towards the desired
value UM . During learning the dendritic synapses will adapt in order to minimise
the error between their dendritic prediction V and the true membrane potential U :
∆wij = η(φ(Ui)−φ(V ∗

i ))φ(Uj). We utilize this property to shape the hidden population.
We start with a dendritically fully connected network. From that network, as shown in
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Figure 1b, a subset of neurons is chosen as visible neurons. These neurons will receive
an external teaching signal, representing the desired time-series, in the form of somatic
nudging (blue connections). Teaching input in the hidden layer is provided by somatic
inputs from other hidden neurons (green connections) and crucially by somatic inputs
from the visible subpopulation (cyan connections). Note that there is no somatic input
from the hidden towards the visible population. During the learning the external teaching
signal will be provided to the visible population. After learning the external teacher is
removed and in the case of successful learning the visible neurons can reproduce the
teacher.
This setup is capable of learning non-Markovian patterns as well as time-series with
activity gaps that are longer than the neuronal decay. The memory extension of the
visible population, necessary for these tasks, is due to the formation of delay lines and
loops in the hidden population. Especially neuronal loops can keep information alive
over long periods without any visible activation. Hence we conclude that our biological
plausible approach is successful in shaping the hidden reservoir for time-series prediction.

(a) Two-compartment neuron, with dendritic and membrane voltage V and U , teacher
U_M defined by excitatory and inhibitory conductances g_E and g_I and firing
rate function φ(). (b) Network showing visible and hidden pool with external (blue)
and intra-network (cyan, green) nudging.
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[T 37] Exploring the role of interneurons in sensory representation
during reward learning
Katharina Anna Wilmes1, Claudia Clopath1

1. Bioengineering Department, Imperial College London, South Kensington Campus, London, United
Kingdom

Adult brains are plastic, although specific behavioral contexts may be required to trigger
plasticity as opposed to continuous remodelling in juvenile brains. Rewards are among
the behavioral cues that trigger plasticity. When mice receive a reward after seeing one
particular stimulus, responses of layer 2/3 pyramidal neurons in visual cortex change
such that task-relevant stimuli, and especially the rewarded stimulus, are more distinctly
represented after learning (Poort et al. 2015, Goltstein et al. 2013). The underlying
changes in excitatory and inhibitory circuitry are however unclear. Recently, interneuron
networks turned out to be crucial regulators of learning and synaptic plasticity (Letzkus et
al. 2011, Fu et al. 2015). Moreover, interneurons might be the main target of top-down
reward signals, as they receive cholinergic input (Froemke et al 2007, Letzkus et al 2011);
cholinergic fibres from reward-processing regions such as the forebrain project to visual
cortex (Chubykin et al. 2015). Therefore, we hypothesize that interneuron networks
are involved in adjusting stimulus representations. Here, we explore different network
motifs that could underlie the changes in stimulus representation. In particular, we use
computational models of layer 2/3 mouse visual cortex consisting of excitatory pyramidal
neurons, and different interneuron populations, corresponding to somatostatin (SST)-
positive, parvalbumin (PV)-positive and vasoactive intestinal peptide (VIP)-expressing
interneuron types.
Acknowledgements
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2. School of Systems Science, Beijing Normal University, No. 19, XinJieKouWai Street, Beijing, China

This study aims to address the fundamental principle of inter synaptic interactions in
synaptic cross-talk through homosynaptic and heterosynaptic plasticity. We propose that
calcium signal coupling between neuronal spines, dendrites and the smooth endoplasmic
reticulum as well as back-propagated action potentials, provides an intriguing mechanism
for inter synaptic cross-talk. We have built a compartmental model based on calcium
dynamics, and present a detailed scheme of calcium interactions between stimulated and
unstimulated spines through the calcium diffusion process in dendrites and calcium in-
duced calcium release (CICR) in the smooth endoplasmic reticulum (SER). By extracting
rate parameters from two-photon calcium imaging observations of calcium decay kinetics
in spines, our results can recapitulate the calcium dynamics in spines and dendrites.
In addition, our work predicted a ‘Mexican hat’ profile in response to high frequency
stimulation and a clustered long term depression (LTD) by low frequency stimulation.
This compartmental model for heterosynaptic plasticity provides a promising mechanism
for the interpretation of cooperative and competitive interactions between synapses, and
reveals the complexity of synaptic plasticity and its potential functions in neural circuits.
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[T 40] A Cortico – Basal Ganglia Model for Bimanual Reaching in
Hemiparetic Stroke
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We propose a cortico-basal ganglia model capable of performing bimanual reaching tasks
under normal and hemiparetic stroke conditions. The areas modeled in each hemisphere
include the prefrontal cortex, motor cortex, proprioceptive cortex, motor neurons of the
spinal cord and the basal ganglia. The proposed architecture has two semi-independent
systems, coupled at the level of the motor cortex, controlling their respective arms.
The architecture on each hemisphere consists of an outer cortical loop and an inner
basal ganglia loop. The two systems control the reaching movements of two simple
kinematic arms (Fig. 1A). Experimental studies on bimanual reaching in hemi-paretic
stroke patients’ shows alteration in velocity profiles of the paretic and non-paretic arm
in different conditions (Rose and Winstein 2004). In the model, stroke-like conditions
were simulated by lesioning a part of the motor cortex. The two motor cortices were
then coupled (through a coupling factor, ε), to simulate bimanual reaching. Both arms
had their respective targets and two types of reaching tasks were performed using this
setup. First is the unimanual reaching task where both the arms were allowed to reach
the target independently (ε = 0) and second is the bimanual reaching task, where they
had to reach the targets simultaneously. This was done using both inhibitory coupling (ε
< 0) and excitatory coupling (ε > 0). It was found that both inhibitory and excitatory
coupling influenced the arms, i.e. when the nature of coupling from the paretic arm to
the non-paretic arm was excitatory and the coupling from non-paretic arm to the paretic
arm was inhibitory, the peak resultant velocity (PRV) of the paretic arm in bimanual
reaching was higher than that of its unimanual counterpart; the converse was observed
in the non-paretic arm (Fig. 1B and 1C). This model behavior is in accordance with
the experimental data (Rose and Winstein 2004). Thus the model suggests that the
interhemispheric communication between the two motor cortices in bimanual reaching is
both excitatory and inhibitory in nature. We anticipate future development of this model
as an elaborate test bench for bimanual reaching tasks in order to develop improved
rehabilitation strategies for stroke patients.
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Fig 1: (A) The cortico-basal ganglia model architecture to simulate the bimanual task
and the arms with their respective targets. The velocity profiles (B) and the peak
resultant velocity (PRV) (C) of the paretic and the non-paretic arm in the unimanual
and bimanual reaching tasks.
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[T 41] Distinct representations of planned reach trajectories in human
premotor and posterior parietal cortex
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Goal-directed movements of the hand are often directed straight at the target, e.g.
when swatting a fly; but when drawing or avoiding obstacles, hand trajectories can
also become quite complex. Studies on movement planning have largely neglected the
latter case and the question of whether the same neural machinery is planning straight,
saccade-like vs. complex hand trajectories. Using time-resolved fMRI during delayed
response tasks we examined planning activity in human superior parietal lobule (SPL)
and dorsal premotor cortex (PMd). We show that the recruitment of both areas in
trajectory planning differs significantly: PMd represented both straight and complex
hand trajectories while SPL only those that led straight to the target. This implies
that complex and computationally demanding reach planning is governed by a frontal
pathway while a parietal route could warrant an alternative and faster way to put simple
plans into action.
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[T 42] Grid-cell activity – from running back and forth on a linear track:
one-dimensional slices through two-dimensional hexagonal grid fields?
Michaela Pröll1,2, Stefan Häusler1,2, Andreas V. M. Herz1,2

1. Ludwig - Maximilians - Universität München, Germany
2. Bernstein Center for Computational Neuroscience Munich, Germany

Grid cells in rodent medial entorhinal cortex are thought to play a critical role for the
neural representation of space and, in particular, for spatial navigation. When the animal
is freely moving in an open arena the firing fields of each grid cell form an imaginary
hexagonal lattice spanning the environment [1]. For movements along linear tracks
the cells seem to respond differently. They show multiple response fields that are not
periodically arranged and differ strongly depending on the running direction. In addition,
peak firing rates vary widely from field to field [2]. Further analysis showed that the
firing fields from runs in one direction are compatible with slices through two-dimensional
hexagonal firing fields [3]. This study did, however, not address the relation between
left-wards and right-wards fields. Here, we show that a joint hexagonal firing pattern
explains the linear-track data for both running directions if additional translational shifts
are allowed for each direction. Importantly, a rotation or scaling of the grid is not
required. The agreement is further improved if the firing rates of the underlying 2D grid
field can vary from field to field, as suggested by recent studies [4]. We also analyzed
firing fields from linear tracks that extended across different rooms and found that the
underlying 2D pattern is the same apart from a translational shift patterns.
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[T 43] Sensor-motor maps for hopping – influence of changes in muscle
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In bipedal locomotion (e.g. walking or hopping) cortical and spinal networks (with
CPGs and sensory feedback) work in concert to generate appropriate motor commands
(for a given task and environment). It is suggested that the human physiology (e.g.
muscle properties) facilitate the neuromuscular system to adapt to sudden changes of
the environment more rapidly [1-3]. In this simulation study, the influence of different
Hill-type muscle properties (e.g. force-length- and force-velocity-relationship) on hopping
patterns is investigated.
Human hopping was simulated using a simplified biomechanical model [4] which addi-
tionally represents different sensory feedback pathways from proprioceptive signals (Golgi
tendon organ: tendon force, muscle spindles: fiber length and velocity). These pathways
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were blended to generate motor commands of one leg extensor muscle-tendon complex
[5]. In this framework, force-length (F-l) and force-velocity-relationship (F-v) were
varied in different types of approximation (constant, linear, non-linear) [2] to evaluate
the individual contribution of the muscle properties on the predicted combinations of
sensor-pathways enabling stable hopping. We call these pathway combinations sensor-
motor maps. In our previous work, the topology of the sensor-motor map was found
to be invariant to changes in the morphological design (e.g. tendon compliance, body
mass, segment lengths) [5]. This indicates the stabilizing function of intrinsic muscle
properties [3].
In this study, we aim at identifying the required level of the representation of muscle
properties to enable functional and robust sensor-motor maps for stable hooping.
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One of the primary cells that are believed to participate in spatial navigation in the
rodent brain are grid cells, found in the Entorhinal Cortex (Hafting et al. 2005).
However, the origin and purpose of the hexagonal arrangement of their response fields
with respect to the spatial location of an animal, called grid fields, remains enigmatic.
Several computational models have been proposed to shed light on the puzzle, for
instance oscillatory interference (Burgess et al. 2007), self-organizing (Kropff & Treves
2008), or continuous attractor models (Fuhs & Touretzky 2006), all of which produce
phenomenologically convincing results. In these models, the purpose of grid cells is
commonly believed to be path integration (Burak & Fiete, 2009). On the other hand,
theoretical investigations showed that grid cells optimally encode spatial locations
(Mathis et al. 2012, Wei et al. 2015).
Here, we propose a novel purpose of grid cells which is related both to path integration as
well as localization, namely transition encoding. It is shown that encoding of transitions
of sequences in two dimensional Euclidean space is optimal for hexagonally arranged
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encoders. Transition encoding was previously suggested to be part of the entorhinal-
hippocampal loop (Cuperlier et al. 2004), however without considering optimality.
The results of the theoretical analysis were used to derive an error function and model
for grid cells. The cells perform transition encoding in form of dendritic computation.
The model is evaluated for varying sizes of receptive fields and using realistic trajectories.
Except for numerical considerations, the model yields cells with high gridness scores.
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The location-specific firing of cells in the entorhinal cortex is subject to extensive experi-
mental and theoretical research. When classifying the tuning properties of entorhinal
cells, researchers distinguish between grid cells, which fire on a hexagonal grid of lo-
cations, cells that fire periodically but without hexagonal symmetry and cells without
periodic firing patterns [1, 2, 3]. This classification requires a measure for the symmetry
of spatially modulated firing patterns — a grid score. The most established grid score
is computed in multiple stages [4, 5]. First, spike locations are transformed into a
rate map. Subsequently, an autocorrelogram of the rate map is cropped, rotated and
correlated with its unrotated copy. The final grid score is obtained from the resulting
correlation-vs-angle function at selected angles. This procedure results in a global grid
score for the firing pattern. Here we suggest a new approach that computes a local grid
score — and the local grid orientation — for each individual spike, directly from spike
locations. Averaging over spikes, we obtain a global grid score and show that it is at
least as reliable as existing grid scores in quantifying the global hexagonal symmetry
of a firing pattern. The new score enables the plotting of spike locations, color coded
with the local grid score or the local orientation of the grid and could thus simplify the
visualization of experimental data. More specifically, it could be used to quantify and
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highlight recent experimental findings on local properties of grid patterns, like boundary
effects in asymmetric enclosures [6] and drifts in grid orientation along the arena [7].
The grid score is applicable to any n-fold symmetry. We provide a public Python package
(using SciPy and NumPy) that efficiently determines the grid score directly from spike
locations.

From left to right: Spikes of good grid cell, bad grid cell and grid cell with defects
on the right half of the arena. Each spike is color coded with its individual grid
score. Right: Grid with drifting orientation. Each spike is color coded with the local
orientation of the grid.
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[T 47] Amplification of gamma- and theta-band inputs by distinct
cortical interneuronal populations
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Despite the fact that cortical neurons receive hundreds or thousands of synaptic inputs
per second, their outputs are sparse, on the range of only a few hertz. This low
output rate suggests that information is encoded not by a single neuron’s spikes but
rather by the population’s collective activity. By characterizing the neuronal transfer
function, or dynamic gain function, one can understand the population’s ability to
encode rapidly varying inputs as well as identify their preference for certain input
frequencies. A pronounced maximum at a certain frequency means that the neuron
selectively amplifies input components at this frequency while others are suppressed. By
means of patch-clamp recordings in acute brain slices of mice from different genetic lines
in which interneurons could be targeted, we characterized the neuronal transfer function
of distinct interneuron classes under different noise regimes. We show that, at the
populational level, fast-spiking interneurons exhibit remarkable preference for stimulus in
the gamma-frequency band, while adapting interneurons respond preferentially to theta-
or gamma-frequencies, depending on the input’s correlation time. These results extend
known evidence of the contribution of these interneuronal classes to oscillations in these
frequency bands as well as indicate that, at the population level, adapting interneurons
may switch from one oscillation rhythm to another depending on the input statistics.
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[T 48] How rapid spike initiation reduces network chaos and localizes
Lyapunov vectors.
Rainer Engelken1,2, Michael Monteforte1,2, Fred Wolf1,2
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2. BCCN, Goettingen, Germany

Spike initiation is a bottleneck for neural information transmission. Recent studies
showed that the bandwidth of information encoding is limited by spike onset rapidness.
Experiments revealed that neocortical neurons have a surprisingly broad encoding
bandwidth. How this impacts the collective network dynamics is not well understood.
Here we show that increasing the spike onset rapidness leads to decreasing attractor
dimension, chaos and dynamical entropy production, which vanishes at a critical value.
We numerically calculated all Lyapunov exponents and derived exact upper and lower
bounds for attractor dimension and dynamical entropy production rate of random spiking
networks. Analysis of large networks with more realistic structure indicate the generality
of these findings. This demonstrates that spike initiation drastically shapes the entropy
production rate by which information about the initial state is erased by the chaotic
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recurrent network dynamics. The effect of spike onset on chaotic entropy production
surpasses the effect on the bandwidth of information encoding by orders of magnitude.
Acknowledgements
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[T 49] Supervised Learning in Spiking Neural Networks with FORCE
Training
Wilten Nicola1, Claudia Clopath1

1. Bioengineering, Imperial College London

Populations of neurons display an extraordinary diversity in the types of problems they
solve and behaviors they display. Techniques have recently emerged that allow us to
create networks of model neurons that solve tasks of similar complexity. Examples include
the FORCE method, a novel technique that harnesses chaos to perform computations.
We demonstrate the direct applicability of FORCE training to spiking neurons by training
networks to mimic various dynamical systems in addition to more elaborate tasks such
as input classifcation, storing sequences, reproducing the singing behavior of songbirds,
and spontaneous replay of a scene from a movie. The networks can be analyzed post-
training to yield illuminating information not easily obtainable in rate networks such
as spike-timing statistics and peri-stimulus time histograms. With suitable biological
constraints, future FORCE trained spiking networks can serve as models for neural
circuits such as the HVC-RA circuit responsible for songbird replay, or the hippocampal
circuit involved in the encoding and replay of episodic memories.

FORCE training with spiking neurons
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[T 50] Robustness of neural circuits with disparate components to
intrinsic and synaptic perturbations
Sebastian Onasch1,2, Julijana Gjorgjieva1,3
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2. Department of Physics, Goethe University, Frankfurt am Main, Germany
3. Technical University of Munich, Freising, Germany

Functionally equivalent neuronal circuits can generate similar activity patterns despite
disparate intrinsic and synaptic properties [1]. Given these intrinsic and synaptic
differences, we asked how the circuits respond to neuromodulators or perturbations
caused by environmental changes: do all circuits respond in the same way because of the
same output, or do they respond differently as reflected in their different components?
One example is given by the stomatogastric nervous system of crustaceans: The pyloric
rhythm is essential for the feeding behavior of these animals and needs to maintain its
functionality over a wide temperature range. The operating ranges differ significantly
across different animals of the same species, such that some circuits seem to be more
robust than others [2]. We aimed to uncover the interplay between circuit properties
(intrinsic and synaptic) and their contribution to circuit stability, by classifying changes in
circuit output due to various kinds of perturbations. High dimensional Hodgkin-Huxley
conductance-based models were used to examine the output of half-center circuits
composed of two such non-identical neurons coupled with mutual inhibition. We propose
a new measure of stability to classify the robustness of different circuits to changes in
the maximum conductance value of specific channel types in the individual neurons.
These changes are applied either separately for each channel type, or in combination, to
examine whether the effects of different perturbations add up. Generally, we find that
circuits which are robust to changes in one conductance, remain robust to changes in
other conductances, despite their different components. We discuss robustness of circuit
output to these changes regarding the individual intrinsic and synaptic properties, which
has implications for neuromodulation, plasticity and environmental changes that can
dynamically alter these characteristics. Furthermore, we consider stability by looking at
extrinsic perturbations, including noise with different correlation structure and periodic
drive with different frequencies.
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[T 51] Manipulating phase relation between neuronal population by time
delay
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Cortical neurons in awake animals show irregular activity due to receiving excitation
and inhibition from other connected neurons in a way that the mean of input of single
neuron is below threshold and neurons almost fire stochastically [1, 2]. Regardless
of this irregular activity, when an area of cortex involved in signal processing the
synchronous state will emerge in different frequency ranges [3]. It is hypothesized that
the coherence among the oscillations of brain regions affects neuronal communications
and the changes in phase relation between the rhythms of these regions will change
effective communication routes [4]. We have studied that how the phase lag of two
coupled balanced networks (BN) is affected by the time delay in the transmission of
signals between the two networks. In particular, we questioned if the theory of weakly
coupled limit cycle oscillators can be applied in the case of two coupled balanced
networks [5-8]. We have generated the balanced neural network using the conductance
based model neurons. The networks are set to in Synchronous-Irregular state at which
the network has a degree of coherence in a gamma range while the dynamics of single
neurons is irregular. We then numerically calculated phase resetting curve (PRC) of
the networks by applying a pulse to 50% of the neurons in the networks and recording
the phase shift due to the applied pulse. The theory predicts that with the delay in
the positive and the negative range of the PRC slope, anti-phase locking and in-phase
states are respectively stable. The main idea is that by knowing the PRC of network it
is possible to predict the behavior of interacting networks.

Coherency change of coupled balanced network. Changing the delay between two
balanced neuronal network, can change their synchronization from out of phase to
in-phase synchronization.
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Any modeler who has attempted to reproduce a spiking neural network model from its
description in a paper has discovered what a painful and time-consuming endeavor this
is. To study the potential pitfalls in reproducing such a model, we reproduce a seminal
study by Izhikevic on Polychronization for which, unusually, source code was provided
at time of publication. For all simulations NEST is used and the analysis is written
in Python 2.6 and snakemake is used as workflow manager. In an initial attempt, we
create a spiking model based on an analysis of the text description in the original paper
and the source code, that nonetheless yields results that bear little resemblance to the
described network dynamics. To uncover the causes for the network dynamics disparity,
we import all random elements of the model (connectivity, initialisation of membrane
potentials, stimulus) from the original source code into the NEST implementation,
and deconstruct the original code to develop modular tests. This process allows us to
make the NEST implementation exact down to numeric precision. We then achieve a
qualitatively similar implementation, which is what is usually understood as reproducing
a study, by rewriting the neuron model and STDP algorithm to use standard expressions
of parameters and standard numerics for the equations as well as generating the sources
of randomness within NEST. We conclude that the original model is sensitive to the
specific random realisation of the network, and derive a number of recommendations
that can help increase the reproducibility of future spiking neuronal network models.
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[T 53] Ion channel cooperativity enables cellular short-term memory via
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Ion channels shape the electrical signalling of neurons, like the generation of spikes.
A widely accepted assumption is that individual channels gate independently: their
opening and closing is determined by other variables, like membrane voltage or calcium
concentration, but channels do not directly influence each other’s state transitions.
Experimental observations, however, show that some channels gate cooperatively. For
example, CaV1.3 channels in hippocampal neurons have recently been shown to assemble
in small clusters and, when opening, to enhance the open probability of neighbouring
channels [1] - a hallmark of channel cooperativity. Despite multifaceted implications of
such inter-channel interactions for neural computation, the functional consequences of
ion channel cooperativity have received relatively little attention, see for example [2,3].
In this study, we focus on small clusters of voltage-gated, cooperative ion channels. Based
on conductance-based neuron models, we demonstrate that such clusters can impose
a multistability of the firing response, thus enabling a neuron to retain a cumulative
short-term memory of recent inputs. Specifically, we show how a small fraction of
cooperative, clustered calcium channels (that are not per se required for the generation
of action potentials) can mediate several levels of persistent firing that encode the
number of recently present transient inputs, see Figure 1. Similar graded persistent
activity has been observed in in-vitro experiments of several brain regions [4,5]. Here, we
used in-vitro dynamic clamp experiments [6] to "equip" mouse perirhinal cortex neurons
with clusters of cooperative channels. In the "presence" of these cooperative channels,
cells switched from a normal firing response to graded persistent activity. This effect was
very stable and recorded neurons did not have to fulfill specific requirements, indicating
that the hypothesized cooperativity mechanism is very robust and generalizable across
cell types.
In summary, our combined mathematical-experimental analysis leads us to conclude that
clusters of cooperative ion channels constitute an interesting and potentially overlooked
mechanism that widens the computational repertoire of single neurons. In particular, ion
channel cooperativity may implement a cell-intrinsic mechanism for neuronal persistent
activity - a representation of memory that usually has been thought to require recurrent
network connectivity.
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A single-neuron model with cooperative clusters of Ca2+ channels exhibits a similar
type of graded persistent activity as cells in the entorhinal cortex (compare Egorov et
al [4]). The rate of activity persisting beyond the actual presence of an input increases
with each stimulation pulse.
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[T 54] Effects of sampling techniques on the assessment of neural
dynamics
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It is hypothesized that the brain can operate in different dynamical states. One of these
states is thought to be directly at a critical phase transition, maximizing properties
such as information processing capacity and dynamic range [1,2,3]. In many systems,
criticality is associated with avalanches of activity, with the avalanche size s following a
probability distribution f(s) ∼ s−α. Such a f(s) has been observed in experiments in
vitro and in vitro based on coarsely sampled neural activity (e.g. LFP, EEG) [4,5]. In
contrast, results based on spiking activity, which are inevitably subsampled, suggests
that the brain operates not at criticality but on a reverberant regime on the subcritical
side [6,7]. To understand the origin of this contradiction, we model how coarse sampling
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affects the observed f(s) and other measures. We find a number of effects that can mask
the true nature of the underlying system. For instance, a low inter-electrode distance
(IED) d can make a critical system appear as supercritical, showing an initial power-law
with an excess near system size (Fig.1A). A large IED, however, can make it appear as
subcritical, described by a power-law f(s) with an exponential cutoff. The same is true
for a system in the reverberant state (Fig. 1B). Moreover, even with identical conditions
the analysis of coarse sampled data is unable to distinguish critical and reverberant states
(Fig. 1C). A better distinction can be achieved based on subsampled data, i.e. spikes
(Fig. 1D). We conclude that more observables besides f(s) are needed in order to assess
criticality. For example, one can measure the autocorrelation time of spiking activity [7]
or the power-spectral density (PSD) of the coarse signal [8], which are independent of
IED. We analyze a dataset of rat hippocampus LFP recorded simultaneously from CA1
and CA3 during sleep. Assuming that the dynamics is bounded by criticality (because
supercriticality results in runaway activity), Fig. 1E suggests that CA3 is closer to
criticality than CA1 by directly comparing them under identical conditions. This is
confirmed by a PSD analysis of each electrode channel, where we find the PSD of the
CA3 channels decay closer to a pure 1/fβ decay with frequency f , which means a
smaller distance to criticality. In conclusion, coarse sampling can bias the inference of
the dynamical state, and to overcome ambiguities combinations of various measures is
necessary.

A,B. Avalanche size probability distribution f(s) for critical and reverberant systems
with IED d. C,D. Comparison of f(s) for coarse sampled (C) and subsampled (D) data
with d = 4. E. f(s) from rat LFP data for CA1 and CA3. F. PSD for all electrode
channels from (E).
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[T 55] Sodium channel activation kinetics determines cut-off frequency
of the dynamic gain
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Action potentials are initiated by activation of sodium channels. How precisely action
potentials are locked onto temporal fluctuations in the neuron’s input, is determined by
the dynamics of action potential initiation. The precision of action potential timing is
often expressed in the frequency domain as "dynamic gain". It expresses the neurons
susceptibility as Hertz per Ampere, i.e. as a modulation of the firing rate per modulation
of the input current. Importantly, the limited timing precision of action potentials is
reflected in a steep cut-off of the dynamic gain in the high frequency limit. Although
the limited bandwidth of the dynamic gain and the related limitation of action potential
timing precision are a fundamental limit for the information processing in the cortex,
there is currently no understanding of the biophysical factors that limit the bandwidth.
Earlier, we presented experimental data indicating that the amount of axonal sodium
channels plays in important role in the bandwidth of the dynamic gain, because reduction
of the sodium channel density or sodium current density decreased the cut-off frequency.
However, it is not known, whether this density is also the factor limiting the bandwidth
of the unperturbed neuron. Here we combine precision measurements of sodium channel
kinetics, measurements of dynamic gain curves and simulations of multi-compartment
neurons. Our results indicate that the kinetics of sodium channel activation is ultimately
limiting the bandwidth of the dynamic gain. The high-frequency behaviour of the gain
curve is therefore set by a molecular parameter.
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A reliable propagation of spiking activity across weakly and sparsely connected neuronal
networks is crucial for the brain function. Usually feed-forward networks (FFN), with
or without recurrent connectivity within each layer, are used as a model to understand
the propagation of spiking activity [1]. Such models have revealed conditions under
which synchronous spike volleys (pulse-packets: PP) can be propagated [2]. Two
similar mechanisms have been proposed to allow for the propagation of weak and
asynchronous PPs. The ’communication through coherence’ (CTC) mechanism requires
that the sender and receiver networks oscillate at the same frequency and phase [3],
while ’communication through resonance’ (CTR) requires that the sender and receiver
networks exhibit resonance frequency at the same frequency [4]. Recently, Moldakarimov
et al. [5] showed that feedback connections between all layers of a FFN can allow for
the propagation of weak and asynchronous PPs provided the feedback connection delay
matches with the temporal precision of the PP. This mechanism while precludes the
need for network resonance and coherent oscillations, increases the connectivity and
thereby wiring cost.
Here we show that it is sufficient to have excitatory feedback connections between
only one pair of layers in an otherwise feed-forward network to reliably transmit weak
and asynchronous PPs. We found that the stable transmission of PPs depends on
the feedback delay. Two ranges of feedback delays support the stable propagation of
the PPs. When the feedback delay is smaller than the temporal precision of the PP,
feedback excitation re-ignites the PP before it diminishes to boost the propagation [5].
(2) When the feedback delay is matched with the period of network resonance frequency,
the pair of layers connected by feedback form a ’resonance pair’ and locally amplify
the weak PP [4] to enable a stable propagation. Thus, we demonstrate that a small
modification in the FFN network (i.e. few feedback excitatory connections between a
pair of layers) can enable propagation of weak signals through a weakly connected FFN
without any fine tuning to obtain coherent oscillations or identical resonance frequency
in each layer of the FFN.
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A pulse packet can propagate successfully if a feebback loop between first and second
layer exists, and also inter-layer delay matches the frequency period of the network .
Signal-to-noise ratio for 10th layer of the network shows propagation happens only for
a suitable amount of inter-layer delay.
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Monocular deprivation (MD) as an experimental paradigm has long been used to to
study mechanisms guiding the development and plasticity of visual cortical circuits.
While most studies examine plasticity in the binocular region of the primary visual cortex
(V1b), where competition between inputs from the two eyes takes place, the effects of
MD in the monocular cortex (V1m) are less well studied. However, experimental results
suggest that different plasticity mechanisms operate in these regions during MD [1]. We
aim at understanding the dynamical aspects of network plasticity in V1m following MD
using network models of cortical circuits. We incorporate recent experimental findings
on the firing rate dynamics from long term in vivo recordings in rodents [2], as well
as known changes in thalamocortical and intracortical synapses following MD [1, 3]
to determine how they affect cortical network dynamics. Underlying our studies is a
sparse random network of inhibitory and excitatory units [4]. We use dynamical systems
theory and simulations of large-scale spiking networks to study the effects of plasticity
induced by MD at thalamocortical and intracortical synapses. We find that the effects
of cortical plastic reorganisation change qualitatively depending on the operating regime
of the recurrent network, both in terms of the average firing rate and the auto- and
cross-correlations of the neurons’ output spike trains. The regime in the basic model is
controlled by the recurrent coupling scale and the structure of inputs driving the network.
Incorporating strong feedforward inhibition and decoupling the background input (from
other cortical areas) from the thalamic drive strongly modulates the nature of these
dynamical changes induced by cortical plasticity. Extending this, we also incorporate a
second type of inhibitory interneurons which are driven by background input, delivering a
type of feedback inhibition. These cells selectively modulate the responses of excitation
and feedforward inhibition and we study how these two types of inhibition interact to
shape network dynamics, as well as other computational properties of cortical circuits in
the mature visual cortex. Our aim is to understand how structure in cortical networks
that suits the computational demands emerges during development, and how it is shaped
by experience.
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Temperature fluctuations challenge the physiology of living organisms [1], as they affect
almost any physico-chemical process, with consequences for metabolism as well as
signalling [2,3]. Because of a temperature change’s immediate effect on ion channels
and cellular electrophysiology, the functionality of neural processing is put at risk.
Specifically, temperature effects on action potential shape and frequency as well as
synaptic transmission [4] limit the temperature range across which neural networks
can be expected to work reliably. These restrictions apply not only to (cold blooded)
ectotherms but also to (warm blooded) endotherms, whose activity-based fluctuations
in brain temperature are known to exceed 2°C [5] – a value sufficiently large to impair
nervous system function, like during febrile seizures or hot-water epilepsy [6,7]. Therefore,
a temperature robust design of the nervous system function should have been favoured
by evolution in both ectotherms and endotherms.
Here, we focus on a potential role for specific network motifs in establishing temperature
robustness and test the hypothesis that circuits of parallel excitation and inhibition,
which are often encountered in vertebrate and invertebrate systems [8], help to constrain
temperature effects, because of the opposing (and hence countermanding) nature of
the involved processes [9]. To this end, we use computation models of small networks
and explore the effect of temperature on firing frequency in motifs with and without
parallel excitation and inhibition. Implemented effects include temperature-dependent
ion channel dynamics in conductance-based neuron models (for example, the Connor-
Stevens and Traub-Miles model) as well as a phenomenological temperature-dependence
of synaptic transmission.
Our results predict an interesting trend: robustness of the output firing rate is sup-
ported by parallel excitation and inhibition if the temperature dependence of inhibitory
transmission exceeds that of the excitatory one. This finding can be reproduced with
different synapse and conductance based neuron models and agrees with experimental
observations reported in the literature [10]. Our study demonstrates the advantages of
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specific neural network designs for achieving robustness to a global perturbation – a
principle that may well extend beyond the effect of temperature as it is discussed here.
Acknowledgements
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The human mirror neuron system is considered the neural basis of our interpersonal
understanding [1]. The neurons found in the motor cortex of the primate fire when the
monkey is making a movement and also when it is observing a similar movement [2].
For humans, the assumption was derived that we recognize the emotions and also the
intentions of other persons by simulating their motor state in our own motor system
[3]. One way to learn more about the human mirror neuron system without directly
measuring the activity of individual neurons consists in the theoretical modeling of the
involved cell assemblies. The mathematical description of the activity of neuron networks
makes it possible to calculate the indicators of the non-invasive measurement methods
and to compare them with the actually measured values. Using statistical optimization
methods, the free parameters of the model can be fitted to the experimental data. Thus,
statements about the physiology of the cell assemblies are possible since the parameters
of the model are directly related to biophysical properties, e.g. cellular and synaptic
conductivities and resting potentials. Here, we use a highly detailed network model
of the prefrontal cortex which all neurons and synapses parameters are determined by
anatomical and in vitro electrophysiological data, and which has previously been shown
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to statistically reproduce a wide range of measures from in vivo prefrontal data [4].
This spiking network model has been adapted to the motor cortex where the mirror
neurons are located. Then it was adjusted to the fMRI data, in the first step the
effective connectivity between the activated regions has been identified by Dynamic
Causal Modeling (DCM) with comparing 424 models and then some modifications were
done on DCM approach to using the (nonlinear) Wilson-Cowan-type model instead of
the standard DCM schemes [5]. The global connectivity was inferred from Wilson-Cowan
model and the connections between regions were made according to the best model
which was found from DCM. The input-output functions of the neurons in the firing-rate
model are matched with the predicted data from DCM analysis by comparing the
resulting outputs, thus realizing the transfer from the macro- to the micro-level. This
model will be used to predict the task performance and also to make predictions about
a completely different set of data in order to make statements about the physiology
properties of human mirror neuron system.
Acknowledgements
This work was funded by a grant from the WIN-Kolleg of the Heidelberger Akademie der Wissenschaften.
We are grateful to Stephanie N. L. Schmidt, Vera Eymann and Manuel Vietze for assistance in data
collection.

References
1 Rizzolatti G, Sinigaglia C (2016): The mirror mechanism: a basic principle of brain function. Nature

Reviews Neuroscience 17, 757-765 10.1038/nrn.2016.135
2 Di Pellegrino G, Fadiga L, Fogassi L, Gallese V, Rizzolatti G (1992): Understanding motor events: a

neurophysiological study. Experimental brain research 91: 176-180 10.1007/BF00230027
3 Gallese V, Goldman A (1998): Mirror neurons and the simulation theory of mind-reading. Trends in

cognitive sciences 2: 493-501 http://dx.doi.org/10.1016/S1364-6613(98)01262-5
4 Hass J, Hertäg L, Durstewitz D (2016) A Detailed Data-Driven Network Model of Prefrontal Cortex

Reproduces Key Features of In Vivo Activity. PLoS Comput Biol 12(5):e1004930
https://doi.org/10.1371/journal.pcbi.1004930

5 Sadeghi, S., Mier, D., & Hass, J. (2016). An fMRI Dynamical Causal Modeling study with Wilson-
Cowan based neuronal equations. Bernstein Conference 2016 10.12751/nncn.bc2016.0218

©(2017) Sadeghi S, Mier D, Hass J
Cite as: Sadeghi S, Mier D, Hass J (2017) Detailed spiking network model of the human mirror neuron
system. Bernstein Conference 2017 Abstract. doi: 10.12751/nncn.bc2017.0174

[T 60] Neuronal Connectivity Options along the Edge of Bounded
Neural Networks – Analysis of Network Structure and Dynamics
Ehsan Safavieh1,2,3, Ulrich Egert1,2

1. Biomicrotechnology, IMTEK – Institute of Microsystems Engineering, University of Freiburg, Germany
2. Bernstein Center Freiburg, University of Freiburg, Germany
3. Faculty of Biology, University of Freiburg, Germany

Neurons which cannot make enough afferent or efferent connections will not survive
in neural networks [1, 2]. In biological neural networks in-vivo this is found under
pathological situations such as stroke areas or epileptic foci. In-vitro, neurons located
at the boundary of cultured networks encounter a special situation where putative
partners are available in one direction only. Therefore, axons of neurons located near
the edge respond in different ways to increase their connectivity within the boundary.
In biologically realistic scenarios, axons reaching the margin may: 1-stop growing and
make local dense tree near the stablished axon; 2- bifurcate and expand the local
area by smaller branches; 3- follow the network’s edge and make new contacts in
more distant locations (Fig. 1). We compared these three edge schemes along with
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the unrealistic scenario that the axons can extend out of the network, in a bounded
balanced neural network with anisotropic axons [3, 4]. Using this model, we simulated
50,000 neurons in a circular network (radius 3 mm, simulated in NEST [5]), where
neuronal somata self-organize into clusters and anisotropic axons of excitatory neurons
bundle to create fascicules. Changing the connectivity of the neurons on the edge has
pronounced effects on structural features of the network such as degree distributions,
local excitation/inhibition balance and motif distributions especially near the boundary.
The edge options, depending on the extent of their impacts on the boundary, can alter
the distribution of recurrent and cycling motifs near the boundary, which will impact the
activity dynamics properties such as firing rates and bursting behavior of the networks.
The heterogeneity produced by clustering and bundling forms higher variability in network
structure and as a result richer patterns of network dynamics with shorter and more
intense bursts emerge.

Fig. 1 – (a) Initial random axon direction. (b) “Probability Increase” method mimics
local dense tree near the axon. (c) “Grafted Mini Axons” models bifurcation of mini-
branches in the local area. (d) “Grow Along the Edge” represents the growth of the
axon near the edge of the network.
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Synchronous neural activity is a typical activity in biological neural networks in-vivo and
in-vitro. While it is known that the bursts of neural activities originate and terminate
in distinct regions [1-3], it is, however, unclear what properties define the time and
region of onset of such activity. To investigate these properties, we have developed
a computational neural network model that mimics essential properties of cortical
networks in vitro, in which such bursting is ubiquitous, and it includes anisotropic
connectivity, clustering of somata, and fasciculation of axons. These networks showed
activity dynamics that in many respects were similar to cultured neural networks. We
analyzed the spatial distribution and mesoscale structure of connectivity in relation
to the participation of local subnetworks in different stages of extra- and intra-burst
activity. Our findings show that bursts usually start from areas with balanced excitation
and inhibition or excess inhibition, while they end in areas receiving excess excitation.
The spatial distribution of initiation areas is non-random and associated with recurrent
connectivity at network boundaries. These results can help to understand how stimulation
of distinct brain regions intercept synchronous events in some brain disorders, like epilepsy
and Parkinson’s Disease [4, 5].
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During the traversal of a firing field, both hippocampal place cells and entorhinal grid
cells elicit action potentials at increasingly earlier phases of the theta oscillation in the
local field potential – an effect called phase precession (O’Keefe and Recce, 1993).
There is an ongoing debate about the brain structures and mechanisms involved in the
generation of phase precession and its role in episodic memory (Jaramillo and Kempter,
2017). Thurley et al. (2008) proposed a model for phase precession in CA3 pyramidal
cells based on short-term synaptic facilitation in response to strong, theta phase-locked
input via a single mossy fiber synapse from the dentate gyrus. However, phase precession
can already be detected further upstream in the medial entorhinal cortex (MEC) and
might just be passed on from there to downstream regions like CA1 or CA3 (Jaramillo et
al., 2014). Here we investigate an extension of the facilitation model for multiple inputs.
In this case, the generation of both spatial tuning and monotonous phase precession in
the target cell is not trivial. By exploring the parameter constraints in our model, we
arrive at experimentally testable predictions about electrophysiological and anatomical
features of a potential region of origin for phase precession.
Acknowledgements
This work was supported by the Deutsche Forschungsgemeinschaft (DFG) [grant numbers (GRK 1589
"Sensory Computation in Neural Systems", GRK 1589/2, KE 788/3-1] and the Bundesministerium für
Bildung und Forschung (BMBF) [grant numbers 01GQ1001A, 01GQ0972].

References
1 O’Keefe and Recce, 1993 10.1002/hipo.450030307
2 Jaramillo and Kempter, 2017 10.1016/j.conb.2017.02.006
3 Thurley et al., 2008 10.1162/neco.2008.07-06-292
4 Jaramillo et al., 2014 10.1523/JNEUROSCI.5136-13.2014

©(2017) Schieferstein N, Kempter R
Cite as: Schieferstein N, Kempter R (2017) Phase precession via synaptic facilitation in the hippocampal
formation. Bernstein Conference 2017 Abstract. doi: 10.12751/nncn.bc2017.0177

[T 63] Reconstructing neural dynamics from experimental data using
radial basis function recurrent neural networks
Dominik Schmidt1,2,3, Daniel Durstewitz1,2,3

1. Department of Theoretical Neuroscience, Central Institute of Mental Health, Mannheim, Germany
2. Bernstein Center for Computational Neuroscience, Heidelberg/Mannheim, Germany
3. Heidelberg University, Mannheim, Germany

Neural recordings often constitute complex, noisy and high-dimensional time series.
To assess underlying network dynamics, analysis methods should target the recorded
population as a whole. A popular class of methods for simultaneously reducing dimen-
sionality while reconstructing smooth trajectories and capturing different noise sources
is the statistical framework of State Space Models (SSMs) [1]. The idea behind SSMs
is that there is an underlying low-dimensional latent dynamical system generating the
observations, with latent dynamics and observations having separate noise terms. While
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linear SSMs are widely used to recover hidden neural trajectories [2], they are only able
to reproduce the linear aspects of the underlying neural dynamics and cannot capture
the complete system [3].
We examine a nonlinear SSM that includes radial basis function (RBF) basis expansions
for the latent state dynamics, originally developed in [4]. With such an RBF expansion,
in theory arbitrary dynamical systems can be approximated [5]. To estimate model
parameters, an Expectation Maximization (EM) algorithm combined with an Extended
Kalman Filter-Smoother is used. A major advantage of Gaussian RBFs is that all
integrals for the expectation values required in the maximization step can be solved
analytically, making this method computationally efficient.
To examine this approach in experimentally realistic scenarios, its effectiveness in cases
where observations result from only an incomplete subset of latent variables, or where
some of the latent states are translated into highly noisy observations, is tested. For this
purpose, benchmark dynamical systems are simulated in different regimes, and states are
projected into higher-dimensional observation spaces in which some of the latent states
may be missing or highly obscured. Inference of dynamics through SSMs is compared
to a direct time series modeling approach without latent states as developed in [6].
While both methods work well in the (empirically unlikely) case of complete latent state
information, only the SSM is able to recover dynamics from incomplete observations.
The SSM-RBF model is also applied to an fMRI dataset obtained during a working
memory task. With this approach, the neural dynamics can be visualized as trajectories
in state space, showing that different task phases can be separated well in this low-
dimensional space, or as flow fields, exposing attractor dynamics of the system.
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Recurrent networks of randomly coupled rate neurons display a transition to chaos at a
critical coupling strength [1]. Their rich internal dynamics emerging near the transition
has been associated with optimal information processing capabilities [2]. In particular,
the dynamics becomes arbitrary slow at the onset of chaos similar to ’critical slowing
down’. However, the interplay between time-dependent input signals, network dynamics,
and the resulting consequences for information processing are poorly understood. Here,
we investigate the effect of time-varying inputs on the transition to chaos. Using dynamic
mean-field theory we determine the largest Lyapunov exponent, which quantities the
rate of exponential divergence or convergence of close-by trajectories. We analytically
obtain the phase diagram for the transition when varying coupling strength or input
amplitude (Figure 1, a). The transition is shifted to significantly larger coupling
strengths than predicted by linear stability analysis of the local Jacobian matrix. This
difference corresponds to the emergence of a novel dynamical regime, which combines
locally expansive dynamics with asymptotic stability. To study information processing
capabilities we evaluate the capacity to reconstruct a past input signal based on a linear
readout of the present state, the so-called memory curve [3]. We find that for a given
input amplitude the memory capacity peaks within the novel dynamical regime (Figure
1, b). This result indicates that locally expansive while asymptotically stable dynamics
is beneficial to store information about the input in the network dynamics.

Figure 1: (a) Phase diagram for signal amplitude σ and coupling strength g. Black
curve: Phase transition to chaotic regime. Gray curve: condition for loss of local
stability. (b) Network memory capacity encoded in color. Global and local transition
curves (black and gray) as in (a).
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Having models of large-scale brain activity that are linked to the properties of single
neurons and connectivity is vital for a mechanistic interpretation of mesoscopic and
macroscopic neural data. Phenomenological models such as Wilson-Cowan equations,
neural mass or field models are widely used but lack a clear link to the underlying
microscopic parameters and often fail to correctly reproduce fast macroscopic dynamics.
Using a refractory density approach [1,2], we systematically derive mesoscopic activity
equations for several interacting populations starting from a microscopic network of
generalized integrate-and-fire (GIF) neurons or generalized linear models (GLM) [3].
Each population consists of 50 – 2000 neurons of the same type but different populations
account for different neuron types. Our mesoscopic theory captures important properties
of population activity such as finite-size fluctuations due to the limited number of
neurons per population and pronounced spike-history effects caused by refractoriness
and adaptation on the cellular level. The mesoscopic model accurately reproduces the
dynamics of the original microscopic spiking neural network model including stochastic
transitions between multistable states and synchronization in balanced networks of
excitatory and inhibitory neurons. We also demonstrate that the mesoscopic model
correctly predicts non-stationary neural activity in a multi-laminar model of a cortical
microcircuit consisting of eight neuron types under thalamic inputs [4].
We also show how our theory can be extended to other biological features such as
synaptic background noise and synaptic short-term plasticity. In conclusion, our theory
offers a general quantitative framework for modeling cortical information processing on
a mesoscopic level that can be constrained by microscopic parameters.
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Dynamic communication within cortical single-unit network is only coarsely known. To
better understand how selective communication is organized within and between brain
areas relevant for motor control, we examined the fronto-parietal grasp network that is
involved in a broad variety of perceptual and cognitive processes related to hand motor
control including vision, decision making, and movement generation. In order to analyze
the dynamics in the neuronal network communication, we implanted 64 electrodes in
each the ventral premotor cortex (area F5) and the anterior intraparietal area (AIP) in
two monkeys. Spiking activity of single units and local field potential (LFP) activity were
recorded simultaneously from all electrodes while monkeys performed a delayed grasping
task, in which monkeys were either instructed to grasp a target with one of two possible
grip types, or could freely choose one of the grips. Dynamic network interactions between
single units and LFPs were assessed using pairwise phase consistency (PPC) as a measure
of functional connectivity (FC). PPC is largely independent of spike-rate variations and
therefore provides an accurate estimate of the phase coherence in different task epochs
and conditions. Beta (18-35Hz) and low frequency (2-8Hz) functional connections
dominated the network, with beta being stronger during fixation and memory epochs,
whereas low frequency was stronger during movement. Beta functional connections
were found almost exclusively between single units of AIP and LFPs in both areas,
whereas single units in F5 synchronized predominantly with LFPs of both areas in low
frequencies. Network connectivity was heterogeneously distributed for all task conditions,
with a small group of single units (hubs) synchronizing consistently with a large part of
the network. On average, pairwise FC was constant across task conditions. However,
conditional differences became apparent when the dynamic FC network was projected
into a state space where each dimension represented the FC of one spike-field pair. Beta
FC network trajectories showed larger cross-conditional differences during the memory
epoch, while low frequency FC network trajectories varied mainly during the movement
epoch. These findings suggest that behavior-relevant changes in the cortical motor
network are coordinated by distinct groups of hub units synchronizing selectively in the
beta or low frequency range.
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Following experimental measurements of clustered connectivity in the cortex, modelling
studies have found that clustering connections in simulated spiking networks causes
transitions between high and low firing-rate states in subgroups of neurons [1]. An
open question is to what extent the pattern of transitions in such networks can be
related to computational functions, such as the generation of sequences. We present
several studies of the relationship between connection structure and network dynamics
in balanced spiking networks with dense nonspecific inhibition. We demonstrate that
balanced networks which contain overlapping assemblies with equal levels of recurrent
excitatory connectivity can produce “winnerless competition” sequences of high activity
states, in which a single assembly is in a high-activity state at any one time. This activity
is reflected in the power spectrum of spiking activity as a peak in the low-frequency
delta range. Sequences can be described with a Markov chain framework, which we use
to verify and quantify the non-uniformity of probabilities of transitions between specific
states. We furthermore investigate which qualities of the network connection matrix
support the generation of state sequences and what determines the specific structure
of transitions between states. At moderate levels of overlap, transition dynamics can
be compared mechanistically to “latching” models of sequence generation, in which
activity is passed between overlapping attractors with overlapping basins of attraction
[2]. The switching transitions can be related to theoretical computational concepts
such as chaotic itinerancy, and could potentially have relevance to biological instances
of Markov sequence generation such as the song production of some species of birds.
The results clarify the computational capabilities of clustered spiking networks and
their relationship to experimental findings. We conclude that clustered networks could
provide a supporting intermediate link between abstract models and biological instances
of sequence generation.
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In previous work it was shown that contrast-invariant neuronal responses to oriented
visual stimuli occur in random network models of primary visual cortex, provided recurrent
inhibition dominates excitation [1]. Through further mathematical analysis it was found
that selective attenuation of the stimulus-independent input mode, common to all
neurons, can explain this property. The input space is 2-dimensional in this well studied
experimental setup, where elongated gratings of light and dark stripes in the visual field
evoke a neuron-individual response specific to the angle of the grating. In our present
study, the same network architecture is used to investigate the input-output relations
for higher-dimensional input ensembles. Color vision in trichromats is an important
example of a 3-dimensional setting, where the selective response of neurons in several
areas of the visual cortex is well documented [2]. In our model, the rate of external
non-homogeneous inputs to the network is weakly tuned according to the individual
neuron’s "preferred feature" of the tuning curve. Our simulation results show that the
firing rate response of neurons, as it was the case for a 2-dimensional input space, again
exhibits strong tuning as well as attenuation of the common mode.
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Spontaneous brain activity is characterized by an asynchronous chaotic state for which
otherwise large excitatory (E) and inhibitory (I) inputs balance each other [V96]. Such
states may be obtained when the synaptic weights scale, in the absence of strong
correlations in the neural activity, as 1/

√
K, where K is the number of afferent synapses.

The variance remains in this case constant [B16], with the mean excitatory and inhibitory
input contributions individually diverging as

√
K. The question is then if and how (a)

the chaotic state and (b) EI balance are obtained in fully autonomous networks, i.e.
with ongoing dynamics coupled to both intrinsic plastiticity (IP), and synaptic plasticity,
considering here both Hebbian (Hebb.) and short term plasticity (ST) .
We examine here networks of continuous-time rate encoding neurons which adapt their
afferent synaptic weight according to a self-limiting Hebbian learning rule deduced from
the stationarity principle for statistical learning [E15]. The pruning of synaptic weights
crossing zero allows then to study networks obeying Dale’s law. The synaptic learning
rules are considered in our study to be identical for excitatory and for inhibitory neurons
[S17], for which have considered both a 1 : 1 or a 4 : 1 ratio. For the stabilization of the
average activity level we use an intrinsic adaption rule for the threshold b=b(t) entering
the sigmoidal [M12].
Under these conditions, we find that EI balance robustly emerges in a self-organized
fashion, with inhibition closely tracking excitation (see Fig. A), without the need for an
explicit 1/

√
K synaptic scaling. This effect is mainly produced by the intrinsic regulation

(IP) of the mean neural activity, and is present even in the absence of synaptic plasticity,
but is further increased by the effect of synaptic renormalization induced by the ongoing
Hebbian plasticity (cf. different bars in Fig. B). Further introduction of short term
plasticity, which can produce fast changes in the effective connectivity between neurons,
is not able to disrupt this state, making our results remarkably robust, and reinforcing
the idea that EI balance is not just desirable in these networks, but almost inevitable
under these conditions. Our results show furthermore that networks of rate-encoding
neurons evolve, under the influence of self-limiting Hebbian plasticity, to a chaotic state
fluctuating strongly on timescales of (30− 50) ms.
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(A) For a representative neuron: total input (in black) and separate inputs from
excitatory (in blue) and inhibitory (in red) neurons. Network config.: 160 exc./40
inh. neurons, connectivity 20%. (B) Avg. correlation coefficient of E-I inputs, with
different forms of plasticity switched on/off.
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In the tactile system of the medicinal leech (Hirudo medicinalis/verbana), sensory
information is processed locally by a network of interneurons in each of the 21 midbody
ganglia [1]. Applying voltage-sensitive dye (VSD) imaging, the activity of up to
100 neurons in each ganglion can be simultaneously recorded [2]. By intracellular
current injection to mechanoreceptors or by applying tactile stimulation in semi-intact
preparations, we identified neurons involved in the processing of tactile stimulation
and mediating the local bend behavior. These neurons were further investigated via
intracellular recordings. In this study, we aimed at constructing a neuronal model
of the local bend network. On the single cell level, our goal was to find out if and
how characteristic response features of different leech neurons can be fitted with the
standard Hodgkin–Huxley model [3]. Our approach comprised two steps: 1) Passive
membrane parameters (time constant, membrane resistance and capacitance) calculated
from experimental data were implemented in the model. 2) Active model parameters
(reversal potentials and conductances of Na+ and K+) were systematically varied to
fit the empirical number of spikes, spontaneous spike activity and spike amplitude, but
the model failed to replicate the intracellularly recorded dependency of spike counts on
intracellular current stimulation amplitude. On the network level, the data from VSD
experiments and intracellular recordings were incorporated into a feed-forward network
model inspired by [4]. Neurons were modeled as simple leaky-integrate-and-fire models.
The model reproduced the amplitude and time course of most of the motor neuron
responses to sensory cell stimulations as measured in [5]. We conclude that both, the
basic single cell – and network – model are not sufficient to simulate the fundamental
neuronal response properties even of this simple nervous system. Future work needs
to combine optimization of channel kinetics on both levels to obtain a more accurate
model of the leech local bend network.
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New technologies of imaging allow the mapping of activity on whole-brain and to infer
interdependence between cortical areas with high spatio-temporal resolution. An increas-
ing number of studies show that higher cognitive functions can be better understood by
considering the brain an interactive dynamical complex network. In this context, we are
developing a data driven computational model to study functional cortical interactions
of human brain. Our broad aim is to create numerical tools to characterize properties of
functional patterns, and their evolution over time, at rest and during a task execution.
We derived connectivity maps from fMRI and DTI experiments to build structural
networks. The dynamic processes are simulated by embedding into this complex network
a combination of oscillations and Balloon-Windkessel hemodynamic response models.
We evaluate how dynamical properties may influence functional interactions. Our initial
model is already able to recover remote synchronization in the network, reaching a
reasonable agreement with experimental functional network (see references). We show
that the best agreement between model and experimental data is reached for dynamical
states that simultaneously maximize synchronicity and metastability. The main contri-
bution of this work is to create a model of networks reconfigurations that will pave the
way for the understanding of transient interactions in the cognitive processes.
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The cerebral cortex is arranged in discrete columns wherein neurons respond to a single
modality across cortical layers [1]. A hypercolumn is a broader definition of a cortical
column; it is made up of the neurons representing a full set of values of a receptive field
parameter [2]. Orientation selective neurons in the visual cortex form hypercolumns
representing all possible orientations between 0 and 180 degrees at a finite amount
of precision [3]. Within these hypercolumns, neurons are cyclically arranged regarding
their orientation preference and form so-called pinwheels [4]. Although it has been
shown that pinwheel density normalized by the hypercolumn area is constant [4], the
absolute pinwheel density is not constant [5]. Using a novel method of modelling
neural placement that predicts pinwheel structures from optimal wiring considerations
[6], we find that cortical map structure appears at a fixed number of neurons per
hypercolumn independently of the overall network size. These results are consistent
with existing biological data that show constant numbers of neurons per pinwheel across
a variety of mammalian species. Observed differences in the absolute pinwheel density
can accordingly be explained just by variations in the neuronal density of the visual
cortex and probably have no functional implication. Thus our findings further support
the presence of a relatively uniform architecture in mammalian visual cortex.
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Collective spiking dynamics are likely linked to the function of neuronal networks. How-
ever, to date two contradictory hypotheses prevail: The first proposed an asynchronous
irregular (AI) state [1], which minimizes redundancy [2] and promotes fast network
responses. The second proposed a critical state [3], which is characterized by long range
correlations in space and time and in models maximizes certain information processing
properties. Distinguishing between these two states is straight forward when the activity
of all neurons is known. However under subsampling [4,5], classic approaches can mistake
a network close to critical as AI: We showed that single neurons exhibit exponential
inter-spike-interval distributions, and the Fano factor of single neurons is always close
to unity.
We derived a novel estimator, which can infer the dynamical state even under strong
subsampling, in principle from the activity of a single neuron (Fig A). In this framework
the dynamical state is characterized by the average number m of postsynaptic spikes
triggered by one presynaptic spike.
We applied this estimator to spiking activity in monkey prefrontal cortex, cat visual
cortex, and rat hippocampus. Consistently, in vivo dynamics is in a narrow regime of
fading reverberations (median m = 0.984), situated between AI (m = 0) and critical
(m = 1). A model with the same m as in vivo could predict the bin size dependent spike
count cross correlations between neurons, Fano factors, inter-spike-interval distributions,
rate distributions, and the avalanche size distributions of the in vivo recordings (Fig B) .
The latter clearly differed from power-laws, which have been used as marker of criticality.
Despite the small difference in m, the fading reverberations state is clearly distinct from
criticality: e.g. it limits the sensitivity and intrinsic timescale of the network, which both
diverge at criticality (Fig C).
Our findings may account for the contradictory experimental results on cortical popu-
lation dynamics: spiking activity appeared AI-like, as under subsampling correlations
are underestimated. In contrast, coarse measures like LFP potentially overestimated
correlations, making networks appear critical. Instead, spiking dynamics in vivo is
situated between the two regimes and may combine their computational benefits by
allowing integration of information over limited timescales, while avoiding the risk of
instability or slowing down associated with criticality.

A. The novel MR estimator can infer the correct dynamical state even under strong
subsampling. B. The in vivo-like network could predict the in vivo avalanche size
distributions. C. The fading reverberations state clearly differs from criticality in terms
of dynamics.
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We present IDTxl, a new open source toolbox for effective network inference from
multivariate time series using information theory, available from github. IDTxl utilises a
greedy or iterative approach with multivariate transfer entropy for building sets of parent
sources for each target node in the network. This iterative conditioning is designed to
both remove redundancies and capture synergistic interactions in building each parent
set. Rigorous statistical controls (based on comparison to null distributions from time-
series surrogates) are used to gate parent selection and to provide automatic stopping
conditions for the inference. The toolkit is a next generation combination of the existing
TRENTOOL and JIDT toolkits, extending TRENTOOL’s pairwise transfer entropy
analysis to a multivariate one, and adding a wider variety of estimator types. Further,
IDTxl is Python3 based, requiring no proprietary libraries, with parallel computing
engines for both GPU and CPU platforms. The toolkit is highly flexible, providing
various information-theoretic estimators for the user to select from; these handle both
discrete and continuous time-series data, and allow choices, e.g. using linear Gaussian
estimators (i.e. Granger causality) for speed versus nonlinear estimators (e.g. Kraskov-
Stoegbauer-Grassberger) for accuracy. IDTxl also automates parameter selection for the

220

https://doi.org/10.12751/nncn.bc2017.0188


user, including selecting source-target delays and constructing non-uniform embeddings
of the sources via conditional mutual information. Tools are included for group-level
analysis of the inferred networks, e.g. comparing between subjects or conditions. Finally,
IDTxl includes additional tools for studying the dynamics of various information flows
on the inferred networks. The primary application area for IDTxl lies in analysing
brain imaging data (import tools for common neuroscience formats, e.g. FieldTrip, are
included). However, the toolkit is generic to analysing multivariate time-series data
from any discipline. We will demonstrate the efficacy of IDTxl in inferring networks
from various synthetic data sets.
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Neuronal networks are faced with the difficult challenge of maintaining stability for the
execution of precise behavioral actions and flexibility to be able to change following
learning and experience-dependent plasticity. Various forms of homeostatic mechanisms
exist to maintain stable function by globally adjusting overall synaptic weights and
intrinsic excitability. A good model to study these processes is the visual cortex (V1)
of rodents during the classical critical period (4-6 weeks after birth). This period is
characterized by a high degree of plasticity that can be induced by manipulating visual
experience, for example, depriving animals of vision in one eye, known as monocular
deprivation (MD). It has been previously shown that MD induces an initial drop in firing
rates followed by a homeostatic recovery of firing rates despite continued deprivation
[1,2]. We asked what other properties of cortical network dynamics change in addition
to firing rates during prolonged MD. We obtained extensive datasets of extracellular
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chronic recordings over 9 days of the joint activity of many cells from the cortices
in freely behaving rodents during MD using tungsten multielectrode arrays [1,2]. We
focused on cortical dynamics in the monocular region of V1 and analyzed 5 hemispheres
ipsilateral to the deprived eye (unaffected, control) and 6 contralateral to the deprived eye
(affected, deprived). To characterize changes in the network, we computed the pairwise
correlation matrix for all recorded cells. We found that the correlations considerably
weakened during early MD, and then recovered during late MD. Moreover, the changes
were consistent among different cell types (excitatory and inhibitory) and different
behavioral states (wake, REM and non-REM sleep), and were not due to changes in
firing rates because shuffling spike times eliminated the effects. The observed drop and
gradual recovery of correlations in deprived hemispheres was very different compared
to control hemispheres. In control hemispheres we observed a slight increase in the
correlations as a function of age, but only during light conditions and in the presence
of visual input. These results suggest that powerful homeostatic mechanisms regulate
network interactions following activity deprivation independent of single neuron firing
rate homeostasis.
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The architecture of iso-orientation domains in the primary visual cortex (V1) of primates
and carnivores apparently follows species invariant quantitative laws [1,2]. The emergence
of this common design has been recreated by an abstract class of mathematical models
for neural circuit self-organization [1,3]. So far no biologically detailed model has been
shown to conform with all features of this common design. Recently, Stevens et al. [4]
made available a biologically mechanistic model which mimics visual pathways and can
be trained by natural stimuli. We examine and characterize this biologically mechanistic
model in order to understand whether detailed models of Hebbian learning for the
formation of nerve cell networks quantitatively match the common design in the visual
cortex.
Our results show that, when covering a substantial fraction of the period of juvenile
plasticity [5], the statistics of pinwheel layouts including average pinwheel densities
generated by the model are time-dependent and typically drop below experimentally
observed values. We also find that the orientation tuning properties of single neurons
continue changing at high rates long after the emergence of orientation selectivity.
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Orientation maps in the simulations typically become more regular over time. The banded
geometry of the orientation domains at the boundaries of V1 increasingly dominate
the center of the simulation area. This process is driven by pinwheel generation
events at the boundaries of V1 followed by pinwheel annihilation events at the center.
The time scale of pinwheel survival is roughly maintained over the course of the
simulation, with fluctuations depending on the learning rate of the system. The
switching behavior between the prominence of orientation stripes from the lateral and
from the superior/inferior boundaries prevents the pinwheel density to decrease to
crystal-like values, concealing a potential energy ground state of the system. This
indicates that boundary effects strongly influence the layouts in this model.
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[T 77] Weak-noise-induced transitions with inhibition and modulation of
neural oscillations
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We analyze the effect of weak-noise-induced transitions on the dynamics of a computa-
tional neuron model in a bistable state consisting of a stable fixed point and a stable
unforced limit cycle. Bifurcation and slow-fast analysis give conditions on the parameter
space for the establishment of this bi-stability. In the parametric zone of bi-stability,
weak-noise amplitudes may strongly inhibit the neuron’s spiking activity. Surprisingly,
increasing the noise strength leads to a minimum in the spiking activity, after which the
activity starts to increase monotonically with increase in noise strength. We investigate
this inhibition and modulation of neural oscillations by weak-noise amplitudes by looking
at the variation of the mean number of spikes per unit time with the noise intensity. We
show that this phenomenon always occurs when the initial conditions lie in the basin of
attraction of the stable limit cycle. For initial conditions in the basin of attraction of the
stable fixed point, the phenomenon however disappears, unless the time-scale separation
parameter of the model is bounded within some interval. We provide a theoretical
explanation of this phenomenon in terms of the stochastic sensitivity functions of the
attractors and their minimum Mahalanobis distances from the separatrix isolating the
basins of attraction.
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Visual responses in V1 are dynamic in time even when the stimulus is static. These
dynamics arise on the backbone of an intricate web of internal connections. Evidence
suggests that these connections have been carefully shaped during development by
Hebbian plasticity[1] to encode the statistical structures of the natural environment[2,3].
Here, we recorded multi-unit activity (32 electrodes, GrayMatter) from awake monkey
V1 during a passive viewing task and we investigated the response dynamics evoked by
different categories of visual stimuli. The stimuli included structured (natural scenes
(NS) and geometric shapes (GS)) and unstructured (phase-scrambled (PS) images and
random noise (RN)) images. Stimulus representations by the neuronal population in
V1 can be described as trajectories in neuronal state space and visualized by lower
dimensional projections via Principal Component Analysis (PCA). Over time, the PCA
projections of population responses (spike counts over 50 ms bins) to different stimuli
traced distinct trajectories: the responses started with a short onset transient ( 100 ms)
and then settled into stimulus-specific sub-regions in the PC space ( 500 to 2000ms).
For all stimulus categories, the velocity of trajectories was high during the transient
and low once the trajectories were stabilized. The distance between the trajectories
to different stimuli in GS, NS and PS conditions peaked during the onset transient
and remained above the baseline during stability, while the distance between the RN
trajectories stayed at baseline for the entire duration of the trial. Interestingly, the
trajectories for structured stimuli (NS and GS) were well separated throughout the trial,
whereas those for unstructured stimuli (PS and RN) were less separable, despite having
nearly identical firing rate profiles. In conclusion, our preliminary analysis suggests that
V1 neural responses to static images exhibit distinct dynamics over time for different
stimuli, with a fast initial transient that contains a large amount of information about
stimulus identity. When the visual stimuli are structured (NS and GS), the response
trajectories settle into stimulus-specific sub-regions in the state space.
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Cortical neurons can realize fast population encoding [4, 5, 8, 1, 7]. The underlying
biophysical mechanisms however are not well understood. Action potential onset
rapidness is proposed to be closely associated with the encoding ability [6]. Reducing
the onset rapidness of pyramidal cells can impair the bandwidth of their linear response
functions [4]. In a recent multi-compartment model [3], using a standard sodium
activation function, cutoff frequencies above 100Hz were found. This high frequency
encoding ability is maintained in the case without a dendritic tree. The observation
above seems to indicate that fast population encoding can be realized without action
potential onset rapidness.
In this work, we analyzed the underlying mechanism in a simplified multi-compartment
model for realizing fast population encoding. We first reproduced the linear response
curve for the model without a dendritic tree. The linear response curve is insensitive
to the temporal correlation of the input, which differs from experimental observations
in cortical neurons [8]. Through calculating the F-I curve of the model, we found that
this is a type II neuron. The F-I curve has a pronounced discontinuity at the threshold
current, which implies that the neuron is capable of high frequency repetitive firing.
Examining the histogram of the inter-spike intervals generated by a stochastic stimulus,
we found that the peak of the histogram fits with the resonance frequency in the linear
response curve. This indicates that the type II model is more likely to generate pieces
of high frequency repetitive firing when responding to the stochastic input. In this way,
it enhances the bandwidth in the high frequency regime which results in a high cutoff
frequency of the linear response curve.
Comparing with another multi-compartment model proposed by Brette [2], we found
that an active soma and a complete spike generation mechanism with both sodium and
potassium channels are important for the pronounced discontinuity in the F-I curve and
high bandwidth in the linear response curve. Removing the ion channels in the soma will
reduce the size of the discontinuity in the F-I curve. If we further replace the complete
spike generation mechanism with resetting the voltage by hand at threshold, the high
frequency repetitive firing breaks down. The neuron model then becomes type I and
exhibit a low encoding ability.
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In vivo and in vitro neural spiking activity clearly differ. While in vivo networks often
show continuous activity[1-3], networks in vitro develop strong bursts separated by
periods of silence[4-6]. This is puzzling considering that both networks presumably share
the same single-neuron dynamics and plasticity rules. We propose homeostatic plasticity
as a mechanism to account for the strong differences of in vivo and in vitro network
dynamics. Analytically treating a mean-field neural network in terms of a branching
process allows us to disentangle the recurrent network dynamics from stochastic external
input. For a given input strength, homeostatic plasticity tunes the recurrent connections
and thus alters the dynamic state of the network, generating bursts under in vitro
conditions, and reverberant, fluctuating dynamics under in vivo conditions. We verify
our conjecture by numeric simulations and compare to experimental results under both
in vivo and in vitro conditions. Our results suggest that homeostatic plasticity may be
exploited by adding stochastic input to in vitro cultures, thus tuning their dynamic state
to be comparable to in vivo dynamics.
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Area MSTd in primate extrastriate visual cortex is assumed to play a central role in the
encoding and perception of optic flow stimuli, i.e. the large-scale motion patterns on
the retina caused by the movement of the visual environment relative to the organism.
Correspondingly, MSTd neurons show tuned responses to the direction of linear motion
stimuli, as well as of ‘spiral motion stimuli’, which include expansion, contraction,
rotation and their mixtures, arranged in a continuous circular dimension. MSTd cells
have been reported to be position-invariant in their responses to spiral motion stimuli.
Here we report a study aimed to determine the exact motion patterns MSTd neurons
are most responsive to. We used reverse correlation, a linear method which has been
successfully used to characterize receptive fields in V1 and MT. Our reverse correlation
stimuli were large complex random dot patterns, formed by the smooth variation
of local dot direction and speed between a virtual grid of positions in the stimulus
where local direction and speed parameters were chosen randomly every 100ms. We
investigated whether these patterns are a more appropriate description of the specific
motion preferences of individual MSTd neurons. We also determined the position
dependency of MSTd responses to spiral motion patterns. We recorded from more than
140 MSTd cells in three rhesus monkeys. For around a quarter of the 86 cells where
sufficient data with the reverse correlation stimulus was recorded, our analysis recovered
significantly structured spatial motion preference maps. The recovered maps show a
preference for similar linear motion directions across the receptive field. This raises the
question whether the method was only successful on cells that have homogeneous linear
motion preferences. Interestingly, almost half of the cells whose receptive field could be
mapped with our reverse correlation stimulus showed position invariant responses to
spiral motion patterns. Additionally, the responses of the mapped cells to spiral and
linear motion patterns significantly correlated with the patterns’ similarity to the spatial
motion maps obtained by the reverse correlation analysis. Our findings are consistent
with the hypothesis that the linear component of MST motion encoding is suited for
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simple linear motion direction preferences, while the responsivity to and selectivity for
complex motion patterns is a non-linear encoding aspect of the population of MST
neurons.
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The control of gaze is an essential component of vision. As the mouse is becoming
an increasingly prominent model in vision research it is important to understand the
phenomenology and neural consequences of gaze- and eye-movements in mice. While
experiments in head-fixed mice provide important insights into processes that stabilize
or shift the gaze with respect to the external world, it is not well understood how freely
moving mice move their eyes, nor how eye- and head-movements affect sensory neural
responses in mice.
To address such questions, we developed a miniature lightweight head-mounted video
camera system (1.3 grams) for mice, which we combined with movement sensors and
chronic multielectrode implants for in vivo electrophysiology in behaving animals. The
camera system allows for simultaneous monitoring of multiple behavioural variables
including eye and whisker pad movements and pupil dilation in freely exploring mice.
We show that the head-mounted video camera system does not affect neural recording
quality and generates stable video recordings with an average jitter per frame of 5
micrometers, less than 0.5% of pupil diameter. Using a semi-automatic behavioural
segmentation algorithm, we find that mouse behaviour is similar with and without the
camera system.
We used the method to quantify covariations of behavioural variables and neural activity
in sensory cortex in different behavioural states. We characterized the relation between
head and eye movements by training different models to predict horizontal and vertical
eye position based on measured movements of the head. A simple linear model was able
to predict a large fraction of variation in eye positions (51% horizontal, 78% vertical).
This suggests that, as reported for freely moving rats (Wallace et al., 2013), many eye
movements are directly coupled to active changes in head orientation. We also found
that activity of neurons in primary visual cortex was either suppressed or enhanced by
head movements, even in the absence of visual input. Using the head-mounted camera
system, we were able to dissociate the effects of different behavioural variables on neural
activity, demonstrating for example that responses were more directly related to head
movement-related signals than to eye or whisker movements.
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Visual motion cues are fundamental for the navigation of many organisms. Classical
models of motion computation consist of temporal correlations of incoming light signals
from two spatially restricted sensors. The fruit fly Drosophila melanogaster is a powerful
genetic model organism with a comparably small brain that responds behaviorally to
motion cues. For these reasons, combining connectomics, physiology, genetics, and
behavior allows significant progress in the mapping of motion detection circuits in the
fly. In the fly visual system, there are two specialized pathways that detect moving light
increments (ON) or decrements (OFF). Pathway splitting occurs in the lamina, one
synapse downstream of photoreceptors, with neurons L1 and L2 & L3 giving rise to the
ON and OFF pathways, respectively. Interneurons in the medulla then connect the L1,
L2 and L3 inputs to the dendrites of the first direction-selective neurons. These circuits
are believed to represent the neural substrate of the local correlation-type models, since
most receptive fields on the circuit are restricted to about one column of the fly eye.
Nonetheless, the functional architecture of the circuits remains incompletely understood.
In particular, one of the medulla interneurons (Tm9) that is behaviorally required in the
OFF pathway shows wide-field responses under some stimulus conditions. This finding
challenges the purely local correlation assumption. Furthermore, recent studies support
a model that implements three-point correlations. We aim to understand the circuit at
the level of single cell visual response properties to be able to map the algorithmic steps
leading to motion detection. Here we investigate the receptive field properties of the
behaviorally critical Tm9 neuron for motion detection using in vivo two-photon calcium
imaging with the genetically encoded GCaMP6f sensor, using a variety of visual stimuli.
In order to understand how complex receptive fields are shaped by presynaptic inputs,
we are combining physiological measurements of the input elements with computational
simulations of the receptive field of postsynaptic, direction selective neurons. We will
ultimately explain how subcomponents of a receptive field can shape neural computations
and animal behavior using measurements of downstream direction-selective neurons or
optomotor responses.
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Reverberation is a major source of noise in acoustic signals, masking both temporal and
spectral features of the stimuli. For processing and recognition of acoustic signals, a
neural representation invariant to reverberation is desirable. It has been shown that
such invariant representations arise along the mammalian auditory pathway, especially
in auditory cortex [1]. However, mechanisms promoting this processing remain largely
elusive. One candidate mechanism is delayed feed-forward inhibition, potentially can-
celling out the echo signal. Such feed-forward inhibition is provided by an important
subtype of inhibitory interneurons (parvalbumin-positive – PV+).
Here, we aim to test processing of reverberated sounds in mouse auditory cortex, using
a set of animal vocalizations. In a first step, we want to compare auditory cortical
activity based on responses of populations of simultaneously recorded single neuron
between non-reverberated and reverberated stimuli and reconstruct the stimuli based on
population responses. Furthermore, we aim to investigate the role of inhibitory PV+
cells on processing of reverberation. For this purpose, the activity of PV+ neurons was
increased by prolonged, low-level optogenetic depolarization, using a stable step-function
opsin (SSFO) variant of ChR2. This optogenetic manipulation was performed during
extracellular recordings from A1 of awake and chronically implanted animals.
In a first step, we observed that individual neurons responded specifically to different
vocalizations and within the vocalization to different motives. Comparing the neuronal
activity of reverberated to non-reverberated stimuli we noticed that reverberation
leads mostly to a deterioration of the temporal structure of neural responses. To our
surprise, we also observed some neurons that responded selectively to the echo in the
reverberated stimuli. Enhancement of feed-forward inhibition mostly resulted in overall
reduction of activity in both clean and reverberated sounds. Detailed results on stimulus
reconstruction and the effect of enhancement of inhibition and consequences for cortical
mechanisms will be discussed.
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The efficient coding theory states that neural populations in sensory systems have
evolved to encode a maximum of sensory information given biophysical constraints.
A common framework for quantifying the amount of information about a stimulus
encoded by neurons is Shannon’s mutual information. Early work studied how single
neurons maximize information transmission, however, since information processing in
sensory systems is performed by many neurons in parallel, interest has switched to
population coding. Recent work has thus tried to answer what shapes of tuning curves
are optimal (i.e. maximize information) and how tuning curves optimally diversify in
populations of neurons [1,2,3,4]. The common result of all these studies is that in
general the number of distinct tuning curves monotonously increases with decreasing
noise. Some studies assumed a single (information limiting) channel [1,2], others studied
small populations of up to two neurons [3,4] and only recently considered the interaction
of different noise sources [4]. Here, we investigated how, in a finite population of
neurons independently coding a one dimensional stimulus variable, optimal tuning curve
diversity depends on two different sources of noise. One noise source is additive input
noise arising from presynaptic signal corruption, the other is output noise present in the
spike generating mechanism - here we consider a common noise model where neurons
generate spikes following Poisson statistics. We assumed binary neurons since they
maximize information in the presence of (biologically realistic) high output noise, they
are a good model of neuronal responses in some sensory systems [5,6] and because they
facilitate calculations. Mutual information was numerically maximized using several
local and global optimization algorithms. For up to four neurons and finite noise levels,
the number of diverse tuning curves in general increases stepwise with both decreasing
input or output noise, a result which is in accordance with previous results. However, for
five and more neurons over a range of input and output noise values the optimal number
of diverse tuning curves changes non-monotonically with noise strength, in contrast to
previous results. This unexpected result yields interesting predictions for the structure
of tuning curves in different sensory systems in the presence of two sources of noise.
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The retina is a complex neural network, responsible for breaking down the visual scene
into its main features such as color, motion and local contrasts. Retinal ganglion cells,
which form the output layer of the retina, provide the only input of visual information
to the brain. The population of ganglion cells displays considerable diversity, with more
than 30 types currently expected based on anatomical and physiological considerations,
and individual types are known to relay distinct visual features to specific areas of the
brain. To understand what information is provided to downstream areas of the brain,
as well as to tease out how visual information is processed in the retinal circuitry, it is
important to cope with this functional diversity.
Previously, much of this diversity has been catalogued by pooling ganglion cell responses
over many individual retinas. Here, we stimulate a mouse retina using a standard battery
of light stimuli and simultaneously record the electrical activity from a large population of
ganglion cells – in whole-mount preparations – using 4096-electrode arrays. This allows
us to recover spikes from 500 to 1000 ganglion cells in a typical experiment. For each
recorded ganglion cell, we measure the receptive field size and temporal dynamics, spike-
train autocorrelation function, direction-selectivity, and orientation-selectivity. Ganglion
cells with either significant direction- or orientation-selectivity are correspondingly labeled.
For the remaining cells, we use an unsupervised learning method (spectral clustering) to
cluster ganglion cells into groups of functionally similar cells. Ganglion cells in each group
are finally tested for homogeneity in their responses to light stimuli, axonal conductance
and whether a minimum pairwise distance (tiling) is respected between their receptive
fields.
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Color vision was lost in mammals during the nocturnal bottleneck when our ancestors
were small and dark-dwelling between 205 to 65 Million years ago (Ma). Among modern
mammals old world monkeys and great apes (re-)invented trichromacy 30-40 Ma. The
newly developed color vision inserted new pathways into visual cortical architecture,
potentially perturbing the layout of orientation domains in the primary visual cortex (V1)
through non-orientation selective cytochrome oxidase blobs (Livingstone and Hubel, J
Neurosci. 1984). How much impact color vision had on the overall functional architecture
of V1 in primates remains unclear and little is known about theoretically expected effects.
Here we predict and test the experimental signatures of three distinct and paradigmatic
model types for this evolutionary transformation of visual cortical architecture in primate
evolution. The models are (i) a color vision dominated optimization model, in which we
expand the coupling between layouts of orientation and color to lowest order (Reichl et
al. PLoS CB 2015, Bressloff et al. PRL 2002). We find that models of this type can
stabilize pinwheel-rich layouts without long-range connections but predict deviations
from the common design, a set of layout rules of orientation domains that has evolved
independently at least twice (Kaschube et al. Science 2010, Schottdorf et al. PLoS
CB 2015). (ii) a geometric distortion model that frees space in a layout of orientation
domains to include color selective cells by displacing orientation domains. We show
that models of this type leave the measures of the common design invariant, but are
particularly sensitive to phase perturbation. (iii) a form vision dominated optimization
model, in which orientation domains constrain the layout of color-selective cells. We
find models of this type to be consistent with experimental data.
In summary, we uncovered a set of quantitative, specific and measurable predictions from
the three model types that can be falsified given the precision of available data. Our
study supports the view that orientation domains provide a scaffold for other functional
layouts. The evolutionary expansion in primates induced only a minor perturbation to
the design of form vision circuitry in V1.
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Current mathematical models in the retina fail to reliably predict responses of retinal
ganglion cells to natural stimuli. Often, in these mathematical models, it is assumed
that the input neurons of the retinal ganglion cells behave linearly. In this work, we
focus on the excitatory input neuron: the bipolar cell and test how well standard models
– like the linear-nonlinear (LN) model – can predict bipolar cell responses to artificial
and natural stimuli. To understand and predict bipolar cell responses to light, we started
with simple full-field contrast changes while recording the membrane potential of the
cells intracellularly. Here, we found some cells with linear and others with nonlinear
responses to contrast changes, and for both types the LN model successfully predicted
responses to new contrast sequences (R2 of 82%-98%). We then continued with spatially
structured artificial stimuli. For these stimuli, the performance of the LN model varied,
for some cells the prediction was accurate (e.g. R2 of 82%) while for other cells the
prediction failed (R2 of 34%). When investigating the reasons for the failure, we found
a novel bipolar cell response property: nonlinear integration in space, similar to Y-type
ganglion cells. Furthermore, this novel Y-type- like property observed in some bipolar
cells caused the LN model to fail. To finalize, we showed natural movies to study how
well we can apply the knowledge learned from artificial stimuli to predict responses to
natural stimuli. Here, again, the model can predict the responses to natural movies well
for linear cells, but failed for nonlinear Y-type- like bipolar cells. The findings suggest
that nonlinear signal integration can start already at the level of bipolar cells and that
nonlinear computations are crucial properties that mathematical models in the retina
have to take into consideration for predicting responses to artificial and natural stimuli.
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Traditionally, most inner retinal neurons are thought to respond with graded voltage
changes to visual stimulation. These analog signals would be converted into spikes only
at the level of the retinal ganglion cells, the output neurons of the retina. However,
a growing body of evidence instead argues that this signal conversion from ’analog’
to ’digital’ can already take place at the level of the bipolar cell synaptic terminals
(Protti et al., 2000; Baden et al., 2013; Puthussery et al., 2013). This conversion
impacts information transmission and coding, for example by increasing the precision of
the signal, but at the expense of decreased reliability and higher energy consumption
(Baden et al., 2011; Sengupta et al., 2014). To understand the biophysical regimes
in which spiking can occur and to study the effects of spiking on information coding,
we built a simple two-compartment model of bipolar cells. The first compartment is
a Hodgkin-Huxley-like channel system, which incorporates four types of ion channels
(Na+, K+, L-type calcium and T-type calcium channels). It is driven by a light stimulus
with different statistics, which is pre- processed by a simple linear filter aimed to model
linear photoreceptor input. The second compartment models a ribbon synapse (Sikora et
al., 2005). This ribbon synapse transforms the voltage signal into calcium concentration,
which in turn drives the dynamics of three different vesicle pools (Burrone et al., 1997).
The release rate of these neurotransmitters act as the output signal of our model
and a “fair currency” for comparing information rates in different regimes. First, we
investigated the impact of channel densities, channel dynamics and different sources of
noise on the responses to light stimuli. In this regard we identified parameter regimes
in which the first compartment switches from a graded signaling to a spiking mode.
As expected, response waveforms were dominated by sodium and potassium channels,
but were in addition strongly influenced by the density of calcium channels. Next, we
evaluated the information that can be read-out linearly from the release rate, with high
information rates indicating regimes that may be favorable for coding. In summary, our
analyses provide insights into the operating regimes of bipolar cells and their possible
consequences on information transmission in vision.
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For understanding complex visual scenes, our brain has to integrate local, distributed
information into global, coherent percepts. This computational process is fundamental
for important functions such as contour integration, figure-ground segregation and,
ultimately, object recognition (e.g. [1-2]). In our contribution, we propose that feature
integration can be performed most efficiently when the neural dynamics of "figure"-
encoding networks is close to a critical state [3]. In such a regime, avalanches of spiking
events are observed on all length scales, thus rendering figures in a scene "visible" for
coincidence detectors in higher visual areas.
We consider the analytically tractable network model of Eurich-Herrmann-Ernst (EHE)
units [4] and we simulate a large network embedded with Ne subnetworks of recurrently,
excitatorily coupled units, each representing a "figure". Each subnetwork of Ns units
is poised at the critical state and competes with other subnetworks through inhibitory
connections. We then present the network with semi-realistic stimulus pairs, mimicking
a 2-AFC task: one containing a complete figure and K random background elements,
and one without a figure, consisting purely of random elements. When a figure is
present, the units belonging to the corresponding subnetwork are externally driven and
the avalanche statistics of this subpopulation is critical while the rest of the network
remains subcritical. When no figure is present, critical dynamics are not observed. We
take advantage of this knowledge to conceive a read-out mechanism based on detecting
avalanches above a threshold size s0 and quantify the 2-AFC task performance.
In our simulations, we observe robustness of feature integration against increasing
numbers K of activated background units. For a fixed observation time interval T ,
we find an optimal threshold s0 for maximizing detection performance. Furthermore,
we compute phase diagrams delineating regions in parameter space where detecting
coincidences performs better than using rate detection schemes, and vice versa. Moreover,
the use of the EHE model allows to analyze the observed dynamics in a simplified setting
with purely excitatory couplings. As can be expected, feature integration without
inhibition is less stable, but the analytical treatment reveals closed-form expressions for
avalanche distributions, thus enabling a comprehensive understanding of our numerical
observations.
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Several studies observe power-law statistics consistent with critical scaling exponents
in neural data, but it is unclear whether such statistics necessarily imply criticality. In
this work, we examine whether the 1/f statistics of retinal populations are inherited
from visual stimuli, or whether they might emerge from collective neural dynamics
independently of stimulus statistics. We examine, in silico, a latent-variable encoding
model of visual scenes, and empirically explore the conditions under which such a
model exhibits 1/f statistics thought to reflect criticality. Specifically, we examine the
Restricted Boltzmann Machines (RBMs) as a factorized binary latent-variable model
for stimulus encoding. We find two surprising results. First, latent variable models
need not exhibit 1/f statistics, but that the optimal model size, reflecting the smallest
model that can faithfully encode stimuli, does. We illustrate that the optimal model
size can be predicted from sloppy dimensions of the Fisher information matrix (FIM),
which align with a subspace spanning the superfluous latent variables. Second, the
optimal-sized model can exhibit 1/f statistics even when stimuli do not, indicating
that this property is not inherited from environmental statistics. Furthermore, such
models exhibit properties of statistical criticality, including diverging susceptibilities. This
empirical evidence suggests that 1/f statistics are neither inherited from the environment,
nor a necessary feature of accurate encoding. Rather, it suggests that parsimonious
latent-variable models are naturally poised close to criticality, generating the observed
1/f statistics. Overall, these results are consistent with conjectures in other fields that
a cost-benefit trade-off between expressivity and parsimony underlies the emergence
of criticality and 1/f power-law statistics. Furthermore, this works suggests that in
latent-variable encoding models, the emergence of 1/f statistics reflects true criticality
and is not inherited from the environmental distribution of stimuli.
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The visual system uses motion anticipation to compensate the delays in retino-cortical
transmission. Neurobiologists first believed that anticipation only happened in the visual
cortex, but recent studies have shown that it starts earlier, in the retina. Berry &
al. (1999) [1] and later Chen & al. (2013) [2] emphasized the role of gain control
mechanisms in retinal anticipation. Berry’s model is able to reproduce the anticipated
response of retinal ganglion cells (RGCs) to a translating bar stimulus with RGC contrast
gain control. Chen’s model accounts for two supplementary motion features: alert
response to (i) the appearance and (ii) to the motion onset of a bar. This is done with
an additional contrast gain control at the level of bipolar cells and a pooling function.
These models simulate independant RGCs whereas these cells are indirectly connected in
the retina via amacrine cells. Furthermore, the presented stimuli studied by the authors
are simple (moving bars). We want to understand how these mechanisms act on the
anticipation of more complex shapes motion in a population of connected RGCs. For this
we have developed a retina simulator, PRANAS (https://pranas.inria.fr/) emulating the
retina spike response to a visual scene, with two layers mimicking the Outer Plexiform
Layer (photoreceptors, horizontal and bipolar cells) and the Inner Plexiform Layer
(connected ganglion cells). PRANAS also provides tools to analyze the statistics of the
population spike response to a general visual scene. We first implemented in PRANAS
the gain control mechanisms of Berry & al. [1] and Chen & al. [2]. This allowed us
to reproduce responses to moving bars. Then we developed a threshold adaptation
mechanism tuned by the bipolar current and enhanced by a pooling function at the
level of RGCs, to make the neuron more sensitive to changes in the input. Our aim
is to compare the results of our two implementations in reproducing the three motion
features introduced earlier. Anticipation has been studied on a shape more complex
than a bar, in order to assess the effect of adaptation on the form of the translating
object. We developed an algorithm to reconstruct the stimulus from the spike trains
produced by PRANAS (Fig 1). Chen & al model produces anticipation but slightly
blurred images. Blur is reduced by threshold adaptation and pooling. We conclude with
a method to evaluate the similarity between the input and the output showing that the
second model performs better.
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Reconstruction of a translating car stimulus from spike trains emitted by PRANAS.
The pink car represents the original stimulus and the blue signal the response of
neurons.
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Global brain activity changes spontaneously over time, ranging from slow synchronized
activity to fast desynchronized activity [1]. This range of activity is similar in awake
(quiescent vs. alert), asleep (slow-wave vs. REM) and anesthetized (deep vs. light)
behavioural states, but is its effect on single unit firing patterns consistent across
behavioural states and species? We recorded spikes and local field potential (LFP)
from all layers of isoflurane-anesthetized cat primary visual cortex (V1), as well as
isoflurane-anesthetized and awake mouse V1, while presenting 5 s long wide-field natural
scene movie clips up to 400 times each. Spiking responses of single units to natural scene
movie clips were remarkably precise, reliable and sparse, with lognormally distributed
mean firing rates. Responses across trials exhibited distinct barcode-like events, some
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as little as 10 ms wide in anesthetized cat and 20 ms wide in anesthetized and awake
mouse, with most response events consisting of no more than one spike per trial.
Cortical state was quantified by the ratio of low (0.5-7 Hz) and high (15-100 Hz)
frequency power of the LFP [2], and switched spontaneously between two extremes:
the synchronized state (1/f distribution) and the desynchronized state (broadband
distribution). Response precision was quantified as the temporal width of detected
response events across trials. Single-unit response reliability was measured by binning
single-trial responses into 20 ms wide bins at 1 ms resolution, and taking the mean
pairwise correlation of binned trial responses across all trial pairs in a given state [3].
Surprisingly, responses in anesthetized cat V1 were more precise, reliable and sparse
during the synchronized than desynchronized state. In contrast, in both anesthetized and
awake mouse V1, responses were more reliable in the desynchronized state, but precision
and sparseness did not differ between the two states (Figure 1). Greater reliability during
the desynchronized state in mouse is consistent with several previous reports in rodents
[3-7]. Our results therefore suggest a species-specific relationship between cortical state
and the precision, reliability and sparseness of single unit responses. The presence of
orientation maps in cat V1 may explain why the result in anesthetized cat differs from
both anesthetized and awake rodents. This hypothesis predicts a similar result in V1 of
other higher mammals, such as ferrets and primates.

Left: Response event widths in the synchronized and desynchronized state (Mann-
Whitney U test). Arrows: geometric means. Middle: Scatter plots of response
reliability in both states. Each point is a single unit (χ2 test). Right: Scatter plots of
response sparseness in both states (χ2 test).
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Cochlear implants (CIs) restore hearing for profoundly deaf people by bypassing the
degenerated inner hair cells and stimulating the auditory nerve fibers (ANFs) directly
with electrical pulses. The responsiveness of the ANF to a particular electrical stimulus
depends on several characteristics of the stimulus and of the ANF. Such information
is vital for optimizing CI processing to improve CI users’ ability to cope in complex
auditory environments where interfering sounds and reverberation hinder listening to the
target sound. However, the nerve’s response can only be measured neurophysiologically
which is not possible in humans.
Here, we present a functional model for the ANF response to pulse-train sequences
and show how it can be applied, in conjunction with functional models for binaural-cue
decoding (Takanen et al., 2014), to predict bilateral CI users’ sensitivity to localization
cues. The ANF model builds on the phenomenological biphasic leaky integrate-and-fire
(BLIF) model (Horne et al., 2016), in which the ANF is thought to integrate incoming
electrical current and to release an action potential if the membrane voltage exceeds a
stochastic threshold and if the neuron is not hyperpolarized before it is ready to spike.
Latency and jitter of the modeled ANF neuron depend on how greatly the threshold
is exceeded. We have developed that model further by adding elements that simulate
refractoriness and facilitation by affecting the threshold value of the model momentarily
after supra- and subthreshold stimulation, respectively.
We show that the revised model can reproduce neurophysiological data considering
refractoriness, facilitation, accommodation and spike-rate adaptation phenomena related
to inter-pulse interactions that affect the responsiveness of the ANF to ongoing pulsatile
stimulation. Outputs from the binaural CI model are shown to demonstrate pulse-
rate dependency of just-noticeable differences for localization cues in electrical hearing.
Consequently, the model offers a versatile instrumental tool for developers of CI coding
strategies, providing accurate estimates of the responses that different stimulations
evoke.
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Neurons show a high degree of variability of spike trains, even in responses to identical
stimuli. This variability is often correlated between neurons of one population, however,
the sources of the correlation remain unknown. According to one hypothesis, inter-trial
fluctuation of an attentional signal can induce noise correlation [Cohen & Newsome 2008,
Ecker et al. 2016]. To test this hypothesis in the primary visual cortex, we designed
a novel cued change detection task in which attentional fluctuations are modulated
across trials. We trained two monkeys to maintain fixation and to make a saccade
toward coherent gratings among a series of two Gabor patches with randomly changing
orientations presented simultaneously in the left and right visual field. The monkeys
learned to attend either to the stimulus on one side or to both stimuli (Fig. 1 A, B).
To track the attentional state on a single-trial basis, we developed a model that
multiplicatively accounts for the stimulus-driven variability of spikes and shared latent
fluctuations of an attentional signal. The model describes the neuronal responses as a
product of a stimulus response, attentional cue, slow drift, and shared latent variables
(Fig. 1 C). The first two components are assumed to capture attentional modulation of
the mean neuronal gain («classical» model of attention [Maunsell & Treue, 2006]). The
slow modulator accounts for potential drift of individual neurons’ firing rates throughout
the recording session and is modeled by a Gaussian process across trials [Rabinowitz
et al., 2015]. The shared attentional modulators are also assumed to be smooth, but
with a faster timescale, and their within-trial dynamics are modeled by Gaussian Process
Factor Analysis [Yu et al., 2009].
We trained the model on responses of V1 neurons in the change detection task. As
expected, the gain of V1 neurons is increased by attention. We found that including
shared latent variables improved predictive performance (Fig. 1 D) on held-out data
compared with a model based on firing rates and attentional cue only. However, the
improvement was small when including more than two latent variables. We are currently
exploring properties of the learned latent components and how they relate to the animal’s
behavior. Overall, our model provides an interpretable account for the effects of spatial
attention in V1 by learning the structure and timescales of fluctuations that affect shared
neuronal variability.
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A) Orientation change-detection task. B) Attention conditions in the task. C) Mixed
latent variable model of a neuronal population (schematic). D) Average predictive
log-likelihood of models with different components relative to a stimulus-driven model
(± SEM).
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The development of models fitted to individual cochlear implant (CI) patients can be
used to individually optimize stimulation strategies with the aim to improve speech
perception. In order to fit an individualized electrically evoked auditory nerve model,
CIs can be used for measuring the nerve’s compound activity in the vicinity of every
channel-related neural cluster, resulting in a recorded response known as electrically
evoked compound action potential (ECAP). Under the assumption that the ECAP is
the compound discharge latency distribution of the whole population convolved with the
unit response (single neuron in the auditory nerve) [1], latency distribution parameters
can be obtained for an individual model using the measured data. In the present work,
an individual model of temporal discharge behavior distribution was implemented using
a novel phenomenological approach that models spike latency and jitter of the neural
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response for a single pulse stimulation as a function of the stimulus amplitude [2].
The auditory nerve was represented by two populations of neurons extended along the
cochlear length with different latency parameters related to peripheral and central areas.
The stimulation weight was considered as a function of longitudinal distance between
source electrode and nerve fiber, leading to a variation of input current amplitude along
the neural populations. The compound discharge latency distribution was modeled as
the combination of post stimulus time histograms obtained with the model output for
both populations. The fitting procedure was based on the ECAP wave recording of
selected electrode positions along the cochlear length at different stimulation levels.
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The synchronization of activity across neurons has been a focus in many recent studies
of information processing in networks of cortical cells and areas. One aspect of such
inter-neuronal synchrony is the locking of spiking activity to local field potentials (LFPs).
Such an interaction has been observed between the timing of individual action potentials
(‘spikes’) of single neurons and the phase of low frequency (<15 Hz) oscillations of
LFPs. However, the potential role of this phase-locking in neural encoding is unknown.
To address this question, two behaving male macaque monkeys were trained to maintain
their gaze on a central fixation point on a computer screen while two coherently moving
random dot patterns (RDP) were simultaneously presented at eccentric locations, moving
linearly in the same direction. One of the two RDPs was presented inside the receptive
field of the recorded neuron and moved either in the neuron’s preferred or anti-preferred
direction LFPs and spikes were recorded from visual cortical area MT. To investigate if
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phase-locking depends on the sensory properties of the visual stimulus, we measured the
interconnection (locking) between spikes and the phase of low frequency LFP oscillations
as a function of the stimulus’ motion direction. We found that the phase-locking follows
a tuning curve based on the presented stimulus’ direction. This function is inverted
compared to the tuning of the spike rate, i.e., the least spike-LFP coupling occurs for
the preferred direction (based on the spike rate), while the strongest spike-LFP coupling
is induced by the anti-preferred direction. This implies that those spikes added to a
neuron’s spike train in response to the preferred (rather than the anti-preferred) stimulus
are inserted during LFP phases with a low spike rate, reducing the overall phase-locking.
We tested this by comparing the neural discrimination calculated based on the spike-rate
at the preferred vs. anti-preferred LFP phase. We found that the neural discrimination
in the anti-preferred LFP phase is significantly larger than the preferred LFP phase.
This suggests that neural information encoded in the spike rate varies with the LFP
phase. Our data suggest that 1) the neural system harnesses spike-LFP coupling in
the primate visual cortex to encode visual information and 2) the information coded by
single neurons fluctuates relative to the surrounding LFP phase.
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The Neurorobotics Subproject of the Human Brain Project primarily develops the
Neurorobotics Platform (NRP), which offers scientists all over the world the opportunity
to connect brain models to robot bodies in various sensory-rich environments. To this
end, the NRP consists of four essential components. The first component is a Robot
Designer that allows users to design robot models that can be used in experiments.
Robot models can be equipped with sensors and actuators or can also be biologically
realistic musculoskeletal models. The Second component is an Environment Designer,
where users can design their 3D environment models they want to run experiments in.
Apart from the tools enabling users to design their own models, some template models
of robots and environments are also provided with the NRP, which can allow rapid
experiment prototyping. The third component is an Experiment Designer that offers
users the capability of defining the experiment protocol by triggering certain events
within an experiment. Events can be triggered when reaching a certain simulation
time or when the robot is in a certain state for example. The fourth component is the
Virtual Coach, a simple API that facilitates running batch experiments and modifying
parameters between different runs. The Virtual Coach is especially useful when running
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learning experiments. Additionally, the NRP offers an interface to easily couple neural
networks to robots by connecting sensor readings to input neurons and neural outputs
to robot actuators. These neurorobotics experiments are then executed in real-time on
high performance supercomputing clusters through an easy to use web interface. Such
infrastructure will facilitate running various types of experiments in multiple environments
with different agents and will help us gain new insights into the causal relationships
linking basic neural constituents to perception, cognition and behavior.

An experiment in the Neurorobotics Platform, where a Roboy robot model is loaded
in the Space Bot Cup Arena. In the upper right corner, the Environment Designer
can be seen. In the lower right corner, the Brain Visualizer can be seen, where users
can visualize neurons spiking in real time.
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The nature of visual evoked potential (VEP) signals which is very low in power makes it
difficult to be obtained except by gathering a series of time-locked electroencephalogram
(EEG) epochs and performing ensemble averaging on these samples to improve the
power. Averaging the EEG samples cannot reveal in details the variability across the
trials. The variability across the trial helps in providing spatiotemporal resolution in
the EEG-fMRI integration for example. In the BCI application, less trials helps in
speeding its ITR. Thus, a plan based on single trial only VEP estimation that minimizes
data loss and reduces recording time is highly desirable. In this work, a Partial Least
Squares (PLS) based approach has been proposed to estimate VEP latencies from
colored EEG noise. The proposed method uses the covariance matrices of the noisy
signal , raw estimated signal and also the pre-stimulation EEG signal. The PLS is
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used to describe the common structures of the covariance matrices by finding a pair of
latent components which produce the maximum covariance. The proposed method then
decomposes the corrupted VEP space into signal and noise subspace; VEP enhancement
is achieved by removing the noise subspace and estimating the clean VEPs only from the
signal subspace. Two subspace-based approaches for single-trial VEP latency estimation
proposed by an author have also been evaluated and compared with PLS. Based on the
comprehensively simulated data involving SNR from 0 to -10 dB indicate that the PLS
schemes outperforms the TDE subspace approach but comparable in P100 estimation to
GEVD subspace approach which prewhitens the input signal; although PLS is better in
the estimation of P200 and N75 average error rate. PLS also has the narrowest standard
deviation as compared to the other two subspace approaches. The results of forty seven
real patient data further confirm the result in the simulated data. With the favourable
performance demonstrated by the outcome of the simulated and real patient data, PLS
estimators have the potentials to be used not only in the visual evoked potential signal
estimator but also for other signal estimations from the brain where SNR values are
relatively low.
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