
Software carpentry

From theory to practice: Standard tools

Pietro Berkes, Brandeis University

Python tools for agile programming

 There are many tools, based on command line or graphical

interface

 I‟ll present:

 Python standard “batteries included” tools

 no graphical interface necessary

 magic commands for ipython

 Alternatives and cheat sheets are on the wiki

Pietro Berkes, 5/10/2010Software carpentry: tools2

The basic agile development cycle

Write tests to check
your code

Write simplest version
of the code

Run tests and debug
until all tests pass

Optimize only at this
point

unittest

coverage.py

pdb

cProfile

timeit

runSnake

Pietro Berkes, 5/10/2010Software carpentry: tools3

The basic agile development cycle

Write tests to check
your code

Write simplest version
of the code

Run tests and debug
until all tests pass

Optimize only at this
point

unittest

coverage.py

pdb

cProfile

timeit

runSnake

Pietro Berkes, 5/10/2010Software carpentry: tools4

Test-driven development: reminder

 Tests are crucial for scientific programming:

 Your research results depend on the code working as advertised

 Unchecked code usually contains errors (some small, some not)

 Write test suite (collection of tests) in parallel with your code

 External software runs the tests and provides reports

and statistics

Pietro Berkes, 5/10/2010Software carpentry: tools5

Test suites in Python: unittest

 unittest: standard Python testing library

 Each test case is a subclass of unittest.TestCase

 Each test unit is a method of the class, whose name starts with
„test‟

 Each test unit checks one aspect of your code, and raises an

exception if it does not work as expected

Pietro Berkes, 5/10/2010Software carpentry: tools6

Anatomy of a TestCase

import unittest

class FirstTestCase(unittest.TestCase):

def test_mean(self):

"""All methods beginning with 'test' are executed"""

data = [-1., 1.]

self.assertEqual(numpy.mean(data), 0.)

def test_variance(self):

"""Test a variance function (buggy test)

Docstrings are used for the test report"""

data = [-1., 1.]

self.assertAlmostEqual(numpy.var(data), 1.3, 7)

if __name__ == '__main__':

unittest.main()

Pietro Berkes, 5/10/2010Software carpentry: tools7

Create new file, test_something.py:

Running a test suite

Pietro Berkes, 5/10/2010Software carpentry: tools8

> python test_something.py

.F

==

FAIL: Test a variance function (buggy test)

--

Traceback (most recent call last):

File "unittest_basic_example.py", line 19, in

test_variance

self.assertAlmostEqual(numpy.var(data), desired, 7)

AssertionError: 1.0 != 1.3 within 7 places

--

Ran 2 tests in 0.000s

FAILED (failures=1)

Multiple TestCases

import unittest

class FirstTestCase(unittest.TestCase):

def test_mean(self):

"""All methods beginning with 'test' are executed"""

data, desired = [-1., 1.], 0.

self.assertEqual(numpy.mean(data), desired)

class SecondTestCase(unittest.TestCase):

def test_truism(self):

self.assertTrue(True)

if __name__ == '__main__':

execute all TestCases in the module

unittest.main()

Pietro Berkes, 5/10/2010Software carpentry: tools9

setUp and tearDown

import unittest

class FirstTestCase(unittest.TestCase):

def setUp(self):

"""setUp is called before every test""“

self.datafile = file(‘mydata’, ‘r’)

def tearDown(self):

"""tearDown is called at the end of every test"""

self.datafile.close()

... all tests here ...

if __name__ == '__main__':

unittest.main()

Pietro Berkes, 5/10/2010Software carpentry: tools10

TestCase.assertSomething

 TestCase defines utility methods that check that some

conditions are met, and raise an exception otherwise

 Check that statement is true/false:
assertTrue('Hi'.islower()) => fail

assertFalse('Hi'.islower()) => pass

 Check that two objects are equal:
assertEqual(2+1, 3) => pass

assertEqual([2]+[1], [2, 1]) => pass

assertNotEqual([2]+[1], [2, 1]) => fail

Pietro Berkes, 5/10/2010Software carpentry: tools11

TestCase.assertSomething

 Check that two numbers are equal up to a given precision:
assertAlmostEqual(x, y, places=7)

 places is the number of decimal places to use:
assertAlmostEqual(1.121, 1.12, 2) => pass

assertAlmostEqual(1.121, 1.12, 3) => fail

Formula for almost-equality is

round(x - y, places) == 0.

and so

assertAlmostEqual(1.126, 1.12, 2) => fail

Pietro Berkes, 5/10/2010Software carpentry: tools12

TestCase.assertSomething

 Check that an exception is raised:

assertRaises(exception_class, function,

arg1, arg2, kwarg1=None, kwarg2=None)

executes
function(arg1, arg2, kwarg1=None, kwarg2=None)

and passes if an exception of the appropriate class is raised

 For example:
assertRaises(IOError,

file, 'inexistent', 'r') => pass

Use the most specific exception class, or the test may pass

because of collateral damage:
tc.assertRaises(IOError, file, 1, 'r') => fail

tc.assertRaises(Exception, file, 1, 'r') => pass

Pietro Berkes, 5/10/2010Software carpentry: tools13

Testing with numpy arrays

 When testing numerical algorithms, numpy arrays have to be

compared elementwise:

Pietro Berkes, 5/10/2010Software carpentry: tools14

class NumpyTestCase(unittest.TestCase):

def test_equality(self):

a = numpy.array([1, 2])

b = numpy.array([1, 2])

self.assertEqual(a, b)

E

==

ERROR: test_equality (__main__.NumpyTestCase)

--

Traceback (most recent call last):

File "numpy_testing.py", line 8, in test_equality

self.assertEqual(a, b)

File

"/Library/Frameworks/Python.framework/Versions/6.1/lib/python2.6/unitt

est.py", line 348, in failUnlessEqual

if not first == second:

ValueError: The truth value of an array with more than one element is

ambiguous. Use a.any() or a.all()

--

Ran 1 test in 0.000s

FAILED (errors=1)

Testing with numpy arrays

 numpy.testing defines appropriate function:
numpy.testing.assert_array_equal(x, y)

numpy.testing.assert_array_almost_equal(x, y,

decimal=6)

numpy.testing.assert_array_less(x, y)

 If you need to check more complex conditions:

 numpy.all(x): returns true if all elements of x are true

numpy.any(x): returns true is any of the elements of x is true

 combine with logical_and, logical_or, logical_not:

test that all elements of x are between 0 and 1

assertTrue(all(logical_and(x> 0.0, x< 1.0))

Pietro Berkes, 5/10/2010Software carpentry: tools15

What to test and how

 Test with hard-coded inputs for which you now the output:

 use simple but general cases

 test special or boundary cases

class LowerTestCase(unittest.TestCase):

def test_lower(self):

each test case is a tuple of (input, expected_result)

test_cases = [('HeLlO wOrld', 'hello world'),

('hi', 'hi'),

('123 ([?', '123 ([?'),

('', '')]

test all cases

for arg, expected in test_cases:

output = string.lower(arg)

self.assertEqual(output, expected)

Pietro Berkes, 5/10/2010Software carpentry: tools16

Numerical fuzzing

 Use deterministic test cases when possible

 In most numerical algorithm, this will cover only
over-simplified cases; in some, it is impossible

 Fuzz testing: generate random input

 Outside scientific programming it is mostly used to stress-test
error handling, memory leaks, safety

 For numerical algorithm, it is often used to make sure one covers
general, realistic cases

 The input may be random, but you still need to know what to
expect as a result

 Make failures reproducible

 log the randomly generated data

 save or print the random seed

Pietro Berkes, 5/10/2010Software carpentry: tools17

Numerical fuzzing – example

class VarianceTestCase(unittest.TestCase):

def setUp(self):

self.seed = int(numpy.random.randint(2**31-1))

numpy.random.seed(self.seed)

print 'Random seed for the tests:', self.seed

def test_var(self):

N, D = 100000, 5

goal variances: [0.1 , 0.45, 0.8 , 1.15, 1.5]

desired = numpy.linspace(0.1, 1.5, D)

test multiple times with random data

for _ in range(20):

generate random, D-dimensional data

x = numpy.random.randn(N, D) * numpy.sqrt(desired)

variance = numpy.var(x, axis=0)

numpy.testing.assert_array_almost_equal(variance, desired, 1)

Pietro Berkes, 5/10/2010Software carpentry: tools18

Testing learning algorithms

 Learning algorithms can get stuck in local maxima, the solution
for general cases might not be easy to derive
e.g., unsupervised learning)

 Turn your validation cases into tests

 Stability tests:

 start from known solution; verify that the algorithm stays there

 start from solution and add a small amount of noise to the
parameters; verify that the algorithm converges back to the
solution

 Generate data from the model with known parameters

 E.g., linear regression: generate data as y = a*x + b + noise
for random a, b, and x, then test that the algorithm is able to
recover the parameters from x and y alone

Pietro Berkes, 5/10/2010Software carpentry: tools19

Other common cases

 Test general routines with specific ones

 Example: test polyomial_expansion(data, degree)

with quadratic_expansion(data)

 Test optimized routines with brute-force approaches

 Example: test z = outer(x, y) with

Pietro Berkes, 5/10/2010Software carpentry: tools20

M, N = x.shape[0], y.shape[0]

z = numpy.zeros((M, N))

for i in range(M):

for j in range(N):

z[i, j] = x[i] * y[j]

Example: eigenvector decomposition

 Consider the function values, vectors = eigen(matrix)

 Test with simple but general cases:

 use full matrices for which you know the exact solution
(from a table or computed by hand)

 Test general routine with specific ones:

 use the analytical solution for 2x2 matrices

 Numerical fuzzing:

 generate random eigenvalues, random eigenvector; construct the matrix;
then check that the function returns the correct values

 Test with boundary cases:

 test with diagonal matrix: is the algorithm stable?

 test with a singular matrix: is the algorithm robust? Does it raise
appropriate error when it fails?

Pietro Berkes, 5/10/2010Software carpentry: tools21

DEMO

Pietro Berkes, 5/10/2010Software carpentry: tools22

Code coverage

 It‟s easy to leave part of the code untested

 Coverage tools mark the lines visited during execution

 Use together with test framework to make sure all your code

is tested

Pietro Berkes, 5/10/2010Software carpentry: tools23

coverage.py

 Python script to perform code coverage

 Produces text and HTML reports

 Allows branch coverage analysis

 Not included in standard library, but quite standard

Pietro Berkes, 5/10/2010Software carpentry: tools24

DEMO

Pietro Berkes, 5/10/2010Software carpentry: tools25

The basic agile development cycle

Write tests to check
your code

Write simplest version
of the code

Run tests and debug
until all tests pass

Optimize only at this
point

unittest

coverage.py

pdb

cProfile

timeit

runSnake

Pietro Berkes, 5/10/2010Software carpentry: tools26

Debugging

 The best way to debug is to avoid bugs

 Your test cases should already exclude a big portion
of the possible causes

 Don‟t start littering your code with print statements

 Core idea in debugging: you can stop the execution of
your application at the bug, look at the state of the
variables, and execute the code step by step

Pietro Berkes, 5/10/2010Software carpentry: tools27

pdb, the Python debugger

 Command-line based debugger

 pdb opens an interactive shell, in which one can

interact with the code
 examine and change value of variables

 execute code line by line

 set breakpoints

 examine calls stack

Pietro Berkes, 5/10/2010Software carpentry: tools28

Entering the debugger

 Enter debugger at the start of a file:

python –m pdb myscript.py

 Enter in a statement or function:

 Enter at a specific point in the code (alternative to print):

import pdb

your code here

if __name__ == '__main__':

pdb.runcall(function[, argument, ...])

pdb.run(expression)

some code here

the debugger starts here

import pdb

pdb.set_trace()

rest of the code

Pietro Berkes, 5/10/2010Software carpentry: tools29

Entering the debugger from ipython

 From ipython:
%pdb – preventive

%debug – post-mortem

Pietro Berkes, 5/10/2010Software carpentry: tools30

DEMO

Pietro Berkes, 5/10/2010Software carpentry: tools31

The basic agile development cycle

Write tests to check
your code

Write simplest version
of the code

Run tests and debug
until all tests pass

Optimize only at this
point

unittest

coverage.py

pdb

cProfile

timeit

runSnake

Pietro Berkes, 5/10/2010Software carpentry: tools32

Python code optimization

 Golden rule: don‟t optimize unless strictly necessary (KIS)

Corollary: only optimize bottlenecks

 Profiler: Tool that measures where the code spends time

 Python: timeit, cProfile

Pietro Berkes, 5/10/2010Software carpentry: tools33

timeit

 Precise timing of a function/expression

 Test different versions of a small amount of code, often used in

interactive Python shell

 In ipython, you can use the %timeit magic command

from timeit import Timer

execute 1 million times, return elapsed time(sec)

Timer("module.function(arg1, arg2)", "import module").timeit()

more detailed control of timing

t = Timer("module.function(arg1, arg2)", "import module")

make three measurements of timing, repeat 2 million times

t.repeat(3, 2000000)

Pietro Berkes, 5/10/2010Software carpentry: tools34

DEMO

Pietro Berkes, 5/10/2010Software carpentry: tools35

cProfile

 standard Python module to profile an entire application
(profile is an old, slow profiling module)

 Running the profiler from command line:

options

-o output_file

-s sort_mode (calls, cumulative,name, …)

 From interactive shell/code:

import cProfile

cProfile.run(expression[,"filename.profile"])

python -m cProfile myscript.py

Pietro Berkes, 5/10/2010Software carpentry: tools36

cProfile, analyzing profiling results

 From interactive shell/code:

 Simple graphical description with RunSnakeRun

 Look for a small number of functions that consume most of the

time, those are the only parts that you should optimize

import pstat

p = pstat.Stats("filename.profile")

p.sort_stats(sort_order)

p.print_stats()

Pietro Berkes, 5/10/2010Software carpentry: tools37

DEMO

Pietro Berkes, 5/10/2010Software carpentry: tools38

Three more useful tools

 pydoc: creating documentation from your docstrings

pydoc [-w] module_name

 pylint: static-checking tool

check that your code respects coding conventions

Pietro Berkes, 5/10/2010Software carpentry: tools39

doctests

Pietro Berkes, 5/10/2010Software carpentry: tools40

 doctest is a module that recognizes Python code in

documentation and tests it

 docstrings, rst or plain text documents

 make sure that the documentation is up-to-date

 From command line:
python –m doctest –v example.txt

python –m doctest –v example.py

 In a script:
import doctest

doctest.testfile("example.txt”) # test examples in a file

doctest.testmod([module]) # test docstrings in module

DEMO

Pietro Berkes, 5/10/2010Software carpentry: tools41

The End

 Exercises after the lunch break...

Pietro Berkes, 5/10/2010Software carpentry: tools42

Pietro Berkes, 5/10/2010Software carpentry: tools43

