
From theory to practice: Standard tools

Software carpentry, Part II

Pietro Berkes, Brandeis University

Outline

 Collaborating: SVN

 Profiling: timeit, cProfile

 Debugging: pdb

 Documentation, code clarity: pydoc, pylint

Pietro Berkes, 9/1/20092 Software carpentry - Part II

Python tools for agile programming

 I’ll present:

 Python standard “batteries included” tools

 no graphical interface necessary

 magic commands for ipython

 Many tools, based on command line or graphical interface

 Alternatives and cheat sheets are on the Wiki

Pietro Berkes, 9/1/20093 Software carpentry - Part II

Version Control Systems

 Central repository of files and directories on a server

 The repository keeps track of changes in the files

 Manipulate versions (compare, revert, merge, …)

Revision 109
Revision 107

Revision 109
Revision 108

...

Pietro Berkes, 9/1/20094 Software carpentry - Part II

Local copy
Central

repository

VCS for the lone scientist

 Store source code, data, papers, and presentations about

a project

 Backup

 Reversible changes

 Multiple synchronized copies of your project:

now you can work from home, too!

Home Work

Pietro Berkes, 9/1/20095 Software carpentry - Part II

VCS for a team of scientists

 Multiple people working at the same time on the same

project (software libraries, papers)

 Handle simultaneous changes to the same files and merge

them or handle conflicts

 Look at recent changes, who is responsible for newest

versions, and much more

Niko

Tiziano

Pietro
Pietro Berkes, 9/1/20096 Software carpentry - Part II

Subversion (SVN)

 Create a new repository
svnadmin create PATH

 requires security decisions about access to repository,

have a look at the SVN book

 Get a local copy of a repository
svn co URL [PATH]

 Checkout a copy of the course SVN repository
svn co https://portal.bccn-berlin.de/svn/python-summerschool/public

Pietro Berkes, 9/1/20097 Software carpentry - Part II

Basic SVN cycle

Update your
working copy

Make changes

Examine your changes

Merge others’ changes

Commit your changes

svn update

svn add svn copy

svn delete svn move

svn status svn diff

svn revert

svn update

resolve conflicts then svn resolved

svn commit –m”meaningful message”

Pietro Berkes, 9/1/20098 Software carpentry - Part II

DEMO

Pietro Berkes, 9/1/20099 Software carpentry - Part II

SVN notes

 SVN cannot merge binary files => don’t commit large

binary files that change often (e.g., results files)

 At each milestone, commit the whole project with a clear

message marking the event
svn commit –m”submission to Nature”

 There’s more to it:

 Branches, tags, repository administration

 Graphical interfaces: subclipse for Eclipse, …

 Distributed VCS: Mercurial, git, Bazaar

Pietro Berkes, 9/1/200910 Software carpentry - Part II

Test Suites in python: unittest

 Automated tests are a fundamental part of modern

programming practices

 unittest: standard Python testing library

Pietro Berkes, 9/1/200911 Software carpentry - Part II

Anatomy of a TestCase

import unittest

class FirstTestCase(unittest.TestCase):

def testtruisms(self):

"""All methods beginning with ’test’ are executed"""

self.assertTrue(True)

self.assertFalse(False)

def testequality(self):

"""Docstrings are printed during executions

of the tests in the Eclipse IDE"""

self.assertEqual(1, 1)

if __name__ == '__main__':

unittest.main()

Pietro Berkes, 9/1/200912 Software carpentry - Part II

TestCase.assertSomething

assertTrue('Hi'.islower()) => fail

assertFalse('Hi'.islower()) => pass

assertEqual([2, 3], [2, 3]) => pass

assertAlmostEqual(1.125, 1.12, 2) => pass

assertAlmostEqual(1.125, 1.12, 3) => fail

assertRaises(exceptions.IOError, file,

'inexistent', 'r') => pass

assertTrue('Hi'.islower(),

'One of the letters is not lowercase')

Pietro Berkes, 9/1/200913 Software carpentry - Part II

Multiple TestCases

import unittest

class FirstTestCase(unittest.TestCase):

def testtruisms(self):

self.assertTrue(True)

self.assertFalse(False)

class SecondTestCase(unittest.TestCase):

def testapproximation(self):

self.assertAlmostEqual(1.1, 1.15, 1)

if __name__ == '__main__':

execute all TestCases in the module

unittest.main()

Pietro Berkes, 9/1/200914 Software carpentry - Part II

setUp and tearDown

import unittest

class FirstTestCase(unittest.TestCase):

def setUp(self):

"""setUp is called before every test"""

pass

def tearDown(self):

"""tearDown is called at the end of every test"""

pass

... all tests here ...

if __name__ == '__main__':

unittest.main()

Pietro Berkes, 9/1/200915 Software carpentry - Part II

DEMO

Pietro Berkes, 9/1/200916 Software carpentry - Part II

Python code optimization

 Python is slower than C, but not prohibitively so

 In scientific applications, this difference is even less
noticeable (numpy, scipy, ...)

 for basic tasks, as fast as Matlab, sometimes faster

 as Matlab, it can easily be extended with C or Fortran code

 Profiler = Tool that measures where the code spends

time

Pietro Berkes, 9/1/200917 Software carpentry - Part II

timeit

 precise timing of a function/expression

 test different versions of a small amount of code, often

used in interactive Python shell

 in ipython, you can use the %timeit magic command

from timeit import Timer

execute 1 million times, return elapsed time(sec)

Timer("module.function(arg1, arg2)", "import module").timeit()

more detailed control of timing

t = Timer("module.function(arg1, arg2)", "import module")

make three measurements of timing, repeat 2 million times

t.repeat(3, 2000000)

Pietro Berkes, 9/1/200918 Software carpentry - Part II

DEMO

Pietro Berkes, 9/1/200919 Software carpentry - Part II

cProfile

 standard Python module to profile an entire application

(profile is an old, slow profiling module)

 Running the profiler from command line:

options -o output_file
-s sort_mode (calls, cumulative, name, …)

 from interactive shell/code:
import cProfile

cProfile.run(expression[,"filename.profile"])

python -m cProfile myscript.py

Pietro Berkes, 9/1/200920 Software carpentry - Part II

cProfile, analyzing profiling results

 From interactive shell/code:

 Simple graphical description with RunSnakeRun

import pstat

p = pstat.Stats("filename.profile")

p.sort_stats(sort_order)

p.print_stats()

Pietro Berkes, 9/1/200921 Software carpentry - Part II

DEMO

Pietro Berkes, 9/1/200922 Software carpentry - Part II

cProfile, analyzing profiling results

 Look for a small number of functions that consume most of

the time, those are the only parts that you should optimize

 High number of calls per functions

=> bad algorithm?

 High time per call

=> consider caching

 High times, but valid
=> consider using libraries like numpy or rewriting in C

Pietro Berkes, 9/1/200923 Software carpentry - Part II

Debugging

 The best way to debug is to avoid it

 Your test cases should already exclude a big portion
of the possible causes

 Don’t start littering your code with print statements

 Core idea in debugging: you can stop the execution of
your application at the bug, look at the state of the
variables, and execute the code step by step

Pietro Berkes, 9/1/200924 Software carpentry - Part II

pdb, the Python debugger

 Command-line based debugger

 pdb opens an interactive shell, in which one can

interact with the code
 examine and change value of variables

 execute code line by line

 set up breakpoints

 examine calls stack

Pietro Berkes, 9/1/200925 Software carpentry - Part II

Entering the debugger

 Enter at the start of a program, from command line:
python –m pdb mycode.py

 Enter in a statement or function:

 Enter at a specific point in the code:

import pdb

your code here

if __name__ == '__main__':

pdb.runcall(function[, argument, ...])

pdb.run(expression)

import pdb

some code here

the debugger starts here

pdb.set_trace()

rest of the code

Pietro Berkes, 9/1/200926 Software carpentry - Part II

DEMO

Pietro Berkes, 9/1/200927 Software carpentry - Part II

Entering the debugger

 From ipython:
%pdb - preventive

%debug – post-mortem

Pietro Berkes, 9/1/200928 Software carpentry - Part II

Two more useful tools

 pydoc: creating documentation from your docstrings

pydoc [-w] module_name

 pylint: check that your code respects standards

Pietro Berkes, 9/1/200929 Software carpentry - Part II

DEMO

Pietro Berkes, 9/1/200930 Software carpentry - Part II

The End

 Exercises after the tea break...

Pietro Berkes, 9/1/200931 Software carpentry - Part II

Pietro Berkes, 9/1/200932 Software carpentry - Part II

TestCase.assertSomething

TestCase methods Examples
assert_(expr[, msg)

assertTrue(expr[, msg])

assertFalse(expr[, msg])

assertTrue(isinstance([1,2], list) => pass

assertTrue('Hi'.islower()) => fail

assertEqual(first, second[, msg])

assertNotEqual(first, second[, msg])

assertEqual([2, 3], [2, 3]) => pass

assertEqual(1.2, 1.3) => fail

assertAlmostEqual(first, second

[, places[, msg]])

assertNotAlmostEqual(first, second

[, places[, msg]])

assertAlmostEqual(1.125, 1.12, 2) => pass

assertAlmostEqual(1.125, 1.12, 3) => fail

assertRaises(exception, callable, ...) assertRaises(exceptions.IOError, file,

'inexistent', 'r') => pass

assertRaises(exceptions.SyntaxError, file,

'inexistent', 'r’) => fail

fail([msg]) fail() => fail

Pietro Berkes, 9/1/200933 Software carpentry - Part II

